Научная статья на тему 'Анализ погрешности метода измерения интегральных характеристик, обусловленной отклонением формы сигнала от гармонической модели'

Анализ погрешности метода измерения интегральных характеристик, обусловленной отклонением формы сигнала от гармонической модели Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
184
57
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ИНТЕГРАЛЬНЫЕ ХАРАКТЕРИСТИКИ / ГАРМОНИЧЕСКИЕ СИГНАЛЫ / МГНОВЕННЫЕ ЗНАЧЕНИЯ / ВЫСШИЕ ГАРМОНИКИ / ПОГРЕШНОСТЬ / INTEGRAL CHARACTERISTICS / HARMONIC SIGNALS / INSTANT VALUES / SUPREME HARMONICS / ERROR

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Мелентьев Владимир Сергеевич, Иванов Юрий Михайлович, Муратова Вера Владимировна

Рассматривается новый метод измерения интегральных характеристик по мгновенным значениям гармонических сигналов, разделенных как в пространстве, так и во времени. Приводятся результаты анализа погрешности метода из-за отклонения реального сигнала от гармонической модели.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Мелентьев Владимир Сергеевич, Иванов Юрий Михайлович, Муратова Вера Владимировна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Error analysis of method of integral characteristics measurement caused by the deviation of signals form harmonic model

The new method of measurement of integral characteristics on instant values of the harmonic signals divided both in space and in time is considered. Results of the analysis of method error because of a deviation of real signal from harmonic model are contained.

Текст научной работы на тему «Анализ погрешности метода измерения интегральных характеристик, обусловленной отклонением формы сигнала от гармонической модели»

УДК 621.317

АНАЛИЗ ПОГРЕШНОСТИ МЕТОДА ИЗМЕРЕНИЯ ИНТЕГРАЛЬНЫХ ХАРАКТЕРИСТИК, ОБУСЛОВЛЕННОЙ ОТКЛОНЕНИЕМ ФОРМЫ СИГНАЛА ОТ ГАРМОНИЧЕСКОЙ МОДЕЛИ

В. С. Мелентьев, Ю. М. Иванов, В. В. Муратова

Самарский государственный технический университет,

Россия, 443100, Самара, ул. Молодогвардейская, 244.

E-mails: vs_mel@mail .ru, fuego27@rambler .ru, [email protected]

Рассматривается новый метод измерения интегральных характеристик по мгновенным значениям гармонических сигналов, разделенных как в пространстве, так и во времени. Приводятся результаты анализа погрешности метода из-за отклонения реального сигнала от гармонической модели.

Ключевые слова: интегральные характеристики, гармонические сигналы, мгновенные значения, высшие гармоники, погрешность.

В настоящее время достаточно широко используются методы измерения интегральных характеристик гармонических сигналов (ИХГС) по мгновенным значениям напряжения и тока, не связанным с периодом входного сигнала [1]. Методы обеспечивают, в общем случае, время измерения менее периода входного сигнала.

Дальнейшее сокращение времени измерения возможно за счет формирования дополнительных сигналов, сдвинутых относительно входных сигналов по фазе. Таким образом, обеспечивается пространственное разделение мгновенных значений сигналов.

В [2] предложен метод измерения ИХГС (в котором осуществляется как пространственное, так и временное разделение мгновенных значений сигналов), отличающийся от известных использованием характерных точек (переход сигнала через ноль).

В соответствии с данным методом в момент перехода входного сигнала напряжения через ноль одновременно измеряют первое мгновенное значение дополнительного напряжения, сдвинутого по фазе относительно входного на угол Дек, и первые мгновенные значения входного сигнала тока и сдвинутого относительно него по фазе на угол Да дополнительного сигнала тока; через интервал времени At одновременно измеряют вторые мгновенные значения входного и дополнительного сигналов напряжения и определяют ИХГС по измеренным значениям.

Однако при реализации данного метода возникает существенная погрешность при отличии углов сдвига фазосдвигающих блоков (ФСБ) в каналах тока и напряжения.

В статье предлагается новый метод измерения ИХГС, при реализации которого углы сдвига фаз ФСБ, используемых для формирования фазового сдвига сигналов напряжения и тока, могут отличаться друг от друга.

Владимир Сергеевич Мелентьев (д.т.н., проф.), зав. кафедрой, каф. информационно-измерительной техники. Юрий Михайлович Иванов (к.т.н), старший научный сотрудник, каф. информационно-измерительной техники. Вера Владимировна Муратова, студент, каф. информационно-измерительной техники.

Метод заключается в том, что в момент перехода входного сигнала напряжения через ноль одновременно измеряют первое мгновенное значение дополнительного напряжения, сдвинутого по фазе относительно ВХОДНОГО на угол ДсК!, и первые мгновенные значения входного сигнала тока и сдвинутого относительно него по фазе на угол Да2 дополнительного сигнала тока; через произвольный (в общем случае) интервал времени одновременно измеряют вторые мгновенные значения входного и дополнительного сигналов напряжения и второе мгновенное значение дополнительного сигнала тока. ИХГС определяют по измеренным мгновенным значениям сигналов.

Временные диаграммы, поясняющие метод, представлены на рисунке.

Если сигналы напряжения и тока являются гармоническими, то входные и дополнительные сигналы напряжения и тока имеют вид

и\(1) = ит *1(£) = 1т + (р);

г/2(£) = ит + Да^; г2(£) = 1т вт(и;£ + <р + Да2),

где ит1 1т — амплитудные значения сигналов напряжения и тока; со — угловая частота входного сигнала; ф — угол сдвига фаз между входными сигналами напряжения и тока.

В момент времени перехода входного сигнала напряжения через ноль мгновенные значения дополнительного напряжения, входного и дополнительного сигналов тока соответственно равны:

и21 = итвтАа1] 1ц = /21 = 1т вт(^ + Да2).

Через интервал времени Д^ в момент времени £2 мгновенные значения входного и дополнительного сигналов напряжения и второе мгновенное значение тока примут вид:

и 12 = ит втшАЦ и22 = ит 8ш(Да1 + шА1)] /22 = 1т Бт(<р + шА1 + Да2).

Используя мгновенные значения сигналов, можно получить выражения для определения основных ИХГС:

- среднеквадратические значения (СКЗ) напряжения и тока:

^скз =

1^12^22^211

- (и], - иъ + иЬУ

1скз =

\

1 /,2 , [2/22^2^1 - /21 - ^?2 + ^)]

2 1 21 ,тт9. ггО ,тт1. ттЧ , г тО. \2

- (1% -1% + 1%У

(1)

(2)

активная (АМ) и реактивная (РМ) мощности:

\и12и22и21\

р

417^1/2, - (иъ - иЪ + С/|2)2

X {й - Г'и) - (Г4 - ГЛ22 + Г4)2] +

+ [2122и22и21 - /21 (С722! - С/!22 + С/|2)]; (3

<э =

їй \и\2и22и2і

ж222Щі-(Щі-и212 + Щ2у

(4)

Данный метод предназначен для определения интегральных характеристик гармонических сигналов. При наличии в сигналах высших гармоник неизбежно возникает погрешность.

Проведём оценку предельного значения методической погрешности, обусловленной отклонением реального сигнала от гармонической модели. Для этого используем методику оценки погрешности результата измерения интегральной характеристики как функции, аргументы которой заданы приближенно с погрешностью, соответствующей отклонению модели от реального сигнала [ [3]].

Если абсолютные погрешности аргументов соответствуют наибольшему отклонению моделей от реальных сигналов, то предельные значения абсолютных погрешностей определения интегральных характеристик сигналов в соответствии с (1)—(4) следующие:

ЛСЛжз = [\(искз)и211 + | (С/скз)с/121 + I (С^скз)с722 |] А[/п

(5)

А/(ЖЗ = [|(/(Жз)/21| + |(/сКз)/22|] А/тах + + [|(/сКз)^21| + \ (1скз)и12 \ + \ (1скз)и22\] Д^тах! (6)

АР = [| (Р)/п | + |(-Р)/21 | + |(-Р)/22 |] А/тах +

+ [| (^)1/21 | + |(-Р)с/12| + | )1/22 |] Д^тах! (7)

А<5 = |(<2)/п| А/тах + [|(<Э)с/21| + \(Я)и12\ + \(ЯУи22\] АС/тах, (8)

где А С7тах = и1тТ^к=2^ик и А /тах = 1гт ^гк — предельные абсолютные погрешности аргументов, соответствующие наибольшим отклонениям гармонических моделей от реальных сигналов; и\т и 1\т — амплитуды первых гармоник сигналов; кик = итк/и\т и кик = 1тк/11т ~ коэффициенты к-тых гармоник напряжения и тока.

Используя выражения для ИХГС (1)—(4) и предельные значения абсолютных погрешностей (5)—(8), можно определить относительные погрешности измерения СКЗ напряжения и тока и приведенные погрешности измерения АМ и РМ.

В качестве примера ниже приведены выражения для определения относительной погрешности измерения СКЗ напряжения и приведенной погрешности измерения РМ:

с 'Пк=2 Ь’ик

диаКЯ =

1 + Y^k=2 huh Нпs^n ^011 sin(Aai + ujAt)I x [| sin Acki sin(Ao;i + wAt) — cos wAi| +

+| sin ujAt sin(Ao;i + wAt) — cos Aa\| + | cos wAt cos Aa\|]; (9)

7 Q

^і + ЕГ-А^ + ЕГ-Л

Efcl2 huk |siny?|

У'' hik + -гг

^^ ci

sin Acki sin w At sin (Acki + w At) \

x [|sin (Acki + ujAt) sin Aa\ — coswAi| +

+ |sin (Acki + ujAt) sin wAt — cos Aai| + |cos ujAt cos Aai|] |. (10)

Проведённый анализ показывает, что погрешности измерения интегральных характеристик зависят от гармонического состава сигналов.

Относительная погрешность измерения СКЗ напряжения, определяемая в соответствии с (9), зависит от угла сдвига фазы ФСБ1 Аа\ и интервала времени At. Приведенная погрешность измерения РМ, которая определяется согласно выражению (10), зависит от Acki, At и угла сдвига фаз между напряжением и током ф. Кроме того, погрешности измерения СКЗ тока и AM зависят еще и от угла сдвига фазы ФСБ2 Аа2-

Полученные в работе результаты позволяют выбирать соответствующие аппаратные средства и параметры измерительного процесса в зависимости от спектра сигналов и предъявляемых требований по точности и времени измерения.

Работа выполнена при поддержке РФФИ (проект 13-08-00173-а).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. В. С. Мелентъев, В. И. Батищев, Аппроксимационные методы и системы измерения и контроля параметров периодических сигналов. М.: Физматлит, 2011. 240 с. [V. S. Melentiev, V. I. Batishev, Approximaton methods and systems for measuring and parameters monitoring of periodic signals. Moscow: Fizmatlit, 2011. 240 pp.]

2. В. С. Мелентъев, Ю. М. Иванов, A. E. Синицын, “Оценка погрешности метода измерения интегральных характеристик с использованием пространственного и временного разделения мгновенных значений гармонических сигналов” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. №3(28). С. 199-202. [V. S. Melentiev, Yu. М. Ivanov, А. Е. Sinitsyn, “Error estimation of method of integral characteristics measurement using spatial and time division of harmonic signals instant values” // Vestn. Samar. Cos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012. no. 3(28). Pp. 199-202].

3. В. С. Мелентъев, В. И. Батищев, Аппроксимационные методы и системы промышленных измерений, контроля, испытаний, диагностики. М.: Машиностроение-1, 2007. 393 с.

[V. S. Melentiev, V. I. Batishev, Approximaton methods and systems for industry measuring, monitoring. Moscow: Mashinostroenie-1, 2007. 393 pp.]

Поступила в редакцию 24/IV/2013; в окончательном варианте — 27/V/2013.

MSC: 42А10

ERROR ANALYSIS OF METHOD OF INTEGRAL CHARACTERISTICS MEASUREMENT CAUSED BY THE DEVIATION OF SIGNALS FORM HARMONIC MODEL

V. S. Melentiev, Yu. M. Ivanov, V. V. Muratova

Samara State Technical University,

244, Molodogvardeyskaya St., Samara, 443100, Russia.

E-mails: vs_mel@mail .ru, [email protected], [email protected]

The new method of measurement of integral characteristics on instant values of the harmonic signals divided both in space and in time is considered. Results of the analysis of method error because of a deviation of real signal from harmonic model are contained.

Key words: integral characteristics, harmonic signals, instant values, supreme harmonics, error.

Original article submitted 24/IV/2013; revision submitted 27/V/2013.

Vladimir S. Melentiev (Dr. Sci. (Tehn.)), Head of Dept., Dept, of Information and Measuring Technics. Yuriy M. Ivanov (Ph. D. (Techn.)), Senior Researcher, Dept, of Information and Measuring Technics. Vera V. Muratova, Student, Dept, of Information and Measuring Technics.

i Надоели баннеры? Вы всегда можете отключить рекламу.