поглотителе в 9 - 10 раз выше, чем углекислого газа, и поэтому его использование позволяет достичь глубокой очистки газа от серосодержащих компонентов. По основным экономическим показателям этот процесс превосходит другие.
Использованные источники:
1. Мановян А.К. Технология первичной переработки нефти и природного газа. М.: Химия, 2001. 568с.
2. Балыбердина И.Т. Физические методы переработки и использования газа. М.: Недра, 1988. 248с.
УДК 665.5
Бозоров Г.Р., к.т.н.
доцент Рузиев А. Т. старший преподаватель Зарипов М.Х. студент магистратуры Бухарский инженерно-технологический институт
Республика Узбекистан, г. Бухара АНАЛИЗ МЕТОДА ОЧИСТКИ ГАЗОВ ОТ КИСЛЫХ КОМПОНЕНТОВ С ПРИМЕНЕНИЕМ РАСТВОРОВ ГИДРОКСИДОВ
ЩЕЛОЧНЫХ МЕТАЛЛОВ Аннотация: в статье анализирован абсорбционной метод очистки газов «ЭЛСОР» и приведены его основные показатели.
Ключевые слова: сырой газ, раствор, гидроксид натрий, абсорбент, расход, концентрация.
Bozorov G.R., c.t.s., associate professor Ruziyev A. T., senior teacher Zaripov M.X., master student Bukhara engineering-technological institute
Uzbekistan, Bukhara ANALYSIS OF THE METHOD OF PURIFICATION OF GASES FROM ACIDIC COMPONENTS WITH THE USE OF SOLUTIONS OF
ALKALI METAL HYDROXIDES Abstract: the article analyzes the absorption method of gas purification "ELSOR" and presents the main indicators of the process.
Keywords: crude gas, solution, sodium hydroxide, absorbent, flow rate, concentration.
Способ очистки газа от серосодержащих примесей включает приготовление раствора гидроксида щелочного металла из исходного раствора сульфата щелочного металла, контактирование газа с раствором гидроксида щелочного металла с получением насыщенного раствора
гидроксида щелочного металла, его регенерацию. Исходный раствор сульфата щелочного металла с концентрацией 10 -15% подают в анодную и катодную камеры диафрагменного электролизера с использованием микропористой диафрагмы из керамики на основе оксида циркония или из керамики на основе оксида циркония, содержащей добавки оксидов алюминия и иттрия. При этом раствор гидроксида щелочного металла, полученный в катодной камере, направляют на контактирование с газом, а раствор кислоты, полученный в анодной камере, подают на регенерацию насыщенного раствора гидроксида щелочного металла. Такой метод позволяет повысить степень очистки от серосодержащих примесей и снизить энергозатраты.
Метод "ЭЛСОР" относится к области химической технологии, а именно к процессам абсорбционной очистки газов от серосодержащих примесей, и может быть использовано в процессах очистки газов различного состава и различного происхождения, в том числе природных, попутных и технологических газов, в частности биогаза, попутного газа нефтяных месторождений, топливных газов, поступающих на объекты теплоэнергетических хозяйств, вентиляционных и технологических газовых выбросов (залповых и регулярных) на объектах химической, нефтехимической промышленности, а также в производстве спецтехники и боеприпасов, содержащих сероводород и меркаптаны.
Способ очистки "ЭЛСОР", обеспечивает наивысшее качество очистки, т.к. растворы гидроксидов щелочных металлов являются лучшими абсорбентами Н2S и других серосодержащих примесей, является экономичным, так как расходный материал для процесса очистки - только электроэнергия и процесс очистки проводится при низких температурах, а получение гидроксида натрия из исходного раствора и регенерация насыщенного кислыми газами раствора после очистки осуществляется с помощью одного и того же электрохимического реактора, т.е. электроэнергия, затраченная на получение абсорбента, эквивалентно обеспечивает также и его регенерацию. Кроме этого способ "ЭЛСОР" можно осуществлять как в стационарных, так и в передвижных установках.
Рис. 1. Установка для очистки газа от серосодержащих примесей содержит: диафрагменный электрохимический реактор 1, разделенный диафрагмой 2 на катодную 3 и анодную 4 камеры, емкость 5 для накопления щелочного раствора, емкость 6 для накопления серной кислоты, абсорбер 7 и десорбер 8. Установка также содержит смеситель 9, насосы 10 и 11, дроссель-вентиль 12 и газо- и гидравлическую обвязку, включающую подающие и отводящие патрубки.
Способ реализуется с помощью установки, изображенной на рисунке 1. Катодная камера 3 реактора 1 и емкость 5 заполняют исходным водным раствором сульфата щелочного металла. Анодную камеру 4 реактора 1 и емкость 6 заполняют исходным раствором - водным раствором сульфата щелочного металла. На электроды реактора 1 (не показаны) подают напряжение и включают насосы 10 и 11. В процессе электролиза исходный раствор сульфата щелочного металла подвергают электрохимическому воздействию в катодной камере 3, превращая его в гидроксид щелочного металла, который накапливают в емкости 5. В емкости 6 в то же время накапливают раствор серной кислоты, образующейся в анодной камере 4 реактора 1.
Раствор гидроксида щелочного металла из емкости 5 насосом высокого давления 10 подают в верхнюю часть абсорбера 7, в нижнюю часть которого поступает сырой газ, подлежащий очистке. Кислые компоненты, содержащиеся в газе, взаимодействуют с поглотителем - раствором гидроксида щелочного металла и очищенный газ выводят из верхней части абсорбера 7.
Насыщенный раствор поглотителя через дроссель-вентиль 12 выводят из нижней части абсорбера 7 и направляют в смеситель 9, в который насосом 11 подают раствор серной кислоты из емкости 6. В смесителе 6 протекают процессы регенерации поглотителя и выделение поглощенных примесей. Газожидкостную смесь из смесителя 6 подают в десорбер 8, из верхней части которого выводят кислые газы, а из нижней части - раствор сульфата щелочного металла, который вновь поступает в катодную 3 и анодную 4
камеры реактора 1.
Таблица 1.
Количество NaOH, необходимое для очистки 1000 нм3 газа от сероводорода при любом соотношении CO2:H2S_
Содержание сероводорода в газе, % Содержание сероводорода в 1000 нм3 газа, кг Количество №ОН для очистки 1000 нм3 газа, кг Затраты электроэнергии для синтеза №ОН, кВт*ч
0,1 1,5 5,0 14
0,2 3,0 10,0 28
0,3 4,5 15,0 42
0,4 6,0 20,0 56
0,5 7,5 25,0 70
1,0 15,0 50,0 140
5,0 75,0 250,0 700
10,0 150,0 500,0 1400
Таблица 2.
Показатели работы установки для электрохимического синтеза гидроксида натрия и серной кислоты из раствора сульфата натрия производительностью 10 кг NaOH в час_
Наименование Значение
Расход электроэнергии на электрохимический синтез №ОН и H2SO4, кВт* ч 28
Расход электроэнергии на вспомогательные работы (приготовление и очистка подпиточного раствора, подача воды охлаждения, приготовление раствора для очистки электрохимических реакторов), кВт* ч 2
Расход сульфата натрия при пуске установки, кг 120
Расход сульфата натрия на приготовление подпиточного раствора, кг/сут 5
Расход воды (любого качества) для охлаждения электрохимических реакторов, л/ч 200
Использованные источники:
1. Смидович Е.В. Технология переработки нефти и газа. Ч. 2-я. Крекинг нефтяного сырья и переработка углеводородных газов. 3-е изд., пер. и доп. -М.: Химия, 1980 г. - 328 с.,
2. Рябов В.Д. Химия нефти и газа / - М.: Нефть и газ, 1998.- 373с.