АНАЛИЗ ЭКСТРЕМАЛЬНЫХ СИТУАЦИЙ С ПОЗИЦИЙ ПРИМЕНЕНИЯ ЭНТРОПИЙНО-ЭНЕРГЕТИЧЕСКОГО ПАРАМЕТРА
В.А. Щуров, В.П. Марфицын*, А.В. Марфицын*, С.В. Марфицын*
РНЦ «Восстановительная травматология и ортопедия» им. акад. Г.А. Елизарова, г. Курган КГУ, г. Курган*
Рассмотрена проблема стресса в ауксологическом плане. Показана возможность применения энтропийно-энергетического параметра.
В соответствие высказанным в 80-х годах XIX столетия законом Арндта-Шульца один и тот же раздражитель способен оказать разное действие в зависимости от дозировки: слабые раздражители возбуждают жизненные процессы, средние их усиливают, сильные тормозягг и очень сильные парализуют. Например, ионизирующая радиация, антибиотики, токсикозы беременности, хирургическая травма относятся к факторам подавления роста организма, но при малых степенях воздействия оказывают стимулирующее влияние на рост [1, 11, 12]. По данным Б.А. Никитюка [4], деточки, которым в годы Отечественной войны было 5-9 лет, обнаружили ускоренное половое созревание. Вероятно, можно говорить о сочетании нормального роста и развития организма с определенным уровнем внешнего стимулирования. Сочетанное действие слабых неспецифических стрессирующих воздействий может лежать в основе акселерации роста и развития. Но закон Андта-Шульца не сумел объяснить все проявления ответной реакции организма на внешние воздействия.
Некоторые явления в природе и технике происходят за очень малые промежутки времени с большой начальной энергией. В технике к этим процессам можно отнести ковку на молотах, штамповку взрывом, когда одновременно происходят механическое и тепловое воздействия на металл, радиационное воздействие. В живых организмах - это могут быть повреждения, полученные во время внезапных травмирующих воздействий, таких как переломы костей.
Эти явления сопровождаются эффектами, не укладывающимися в обычные рамки соотношений вероятности достижения предельного состояния. Рассмотрение этих явлений с позиции применения энтропийно-энергетического параметра позволяет понять их физический механизм.
Энтропийно-энергетический параметр имеет выражение [4]:
Ф = ДиТН/ЦНТ, (1)
где Ди - приращение энергии в процессе нагрузки, Т - абсолютная температура в процессе нагрузки,
иН - начальная энергия,
ТН - абсолютная температура в начальный период нагрузки.
Энтропийно-энергетический параметр применяется при определении вероятности достижения предельного состояния [3]:
Р = exp AU ТН / ТН UH +ехр iq>l, (2)
где Р - вероятность достижения предельного состояния,
ехр ф - энтропийный терм,
ехр 1ф 1 — восстанавливающий терм.
Рабочая формула для определения вероятности достижения предельного состояния (отказа) может быть записана в виде [5]:
Р = ехр (AU Тн /Uh Т) - 1, (3)
где (-1) - значение восстанавливающего терма в условиях близких к идеальным (равномерность химической и физической структуры металла). Значение (-1) получается, когда ехр 1 = ехр ift = =-1. Значение ill соответствует энергетическому минимуму для идеально упругого тела [4].
Эта формула справедлива, когда эксплуатация или нагружение тела идет от момента времени т, стремящегося к нулю постепенно, начиная с Ди = 0 и возрастающей постепенно в процессе эксплуатации. Она применяется для расчета ресурса сосудов под давлением и арматуры [9].
Когда тело не нагружено или нагружено незначительно, в нем идут диффузионные процессы выравнивания неоднородности структуры, и тело может эксплуатироваться практически бесконечно долго, так как вероятность достижения предельного состояния близка к нулю. Это используется в практике изготовления корпусных деталей прецизионных станков, когда после изготовления они выдерживаются в не-нагруженном состоянии около 20 лет.
Как показано в [9], первый член этого выражения отражает энтропийные процессы, а второй -восстанавливающие. При этом во 2-й член может входить и 3-й, учитывающий структурные и механические свойства материала.
В отличие от 1-го члена, имеющего всегда действительное значение, 2-й член (ехр щ2) имеет
Серия «Образование, здравоохранение, физическая культура», выпуск 5, том 1
51
Теория функциональных систем и современные проблемы стресса, адаптации и поведения
2 действительные значения при <pl —0 и <р1 = т. При этом exp Ю = 1, a exp т = -1.
При приложении нагрузки первый член ехрО =
1, то есть как бы достигается сразу предельное состояние. Этого, однако, не происходит, потому что тут же мгновенно возникает удерживающая сила от потенциальной энергии свободных электронов при ф2 = in. Следовательно, между действием и противодействием проходит комплексное время.
Второй комплексный член ехрЮ = 1 «работает», когда имеют место экстремальные нагрузки, то есть нагрузки, действующие мгновенно, с очень большими энергиями. Тогда в момент времени, когда действительное и комплексное время равны нулю, будет соотношение:
Р = ехрО +expi 0 =1+1 = 2. (4)
Вероятность достижения предельного состояния будет в 2 раза больше обычной. Тогда после «панического» увеличения вероятности до 2-х, одна составляющая (комплексная) уходит на рассеяние энергии в окружающем пространстве (механическая, тепловая, звуковая энергия), а остающаяся действительная единица вызывает уравновешивающую противодействующую (-1).
При экстремальных нагрузках таких, например, как ковка нагретых заготовок, энергия падающих частей молота в сотни раз превышает работу по деформации заготовки. Энтропия заготовки ещё более уменьшается за счет её абсолютной температуры (Та6с = 1300-1400К) [3]. Следовательно, энтропийно-энергетический параметр ф —» 0.
Избыток энергии падающих частей молота идет на сотрясение массивных частей наковальни (станины, фундамента), почвы и окружающего пространства, бесследно исчезает и положительного эффекта не даёт.
В случае облучения потоком нейтронов возникает феномен увеличения прочности металла, позволяющий увеличить его ресурс [6]. В отличие от предыдущего примера, в данном случае энергия не теряется, а идет на созидание положительного эффекта.
В случае ковки металла лишь незначительная часть энергии идет на изменение его структуры. Остальная часть исчезает в окружающем пространстве. В этом случае происходит улучшение структуры материала, который первоначально имел дефекты структуры после изготовления (отливки, прокатки).
На рис. 1 показаны зависимости вероятности достижения предельного состояния для 3-х случаев: I - идеальный случай, II - случай с начальным дефектом, III - случай с восстанавливающим параметром. Из рис. 1 видно, что время ресурса т = Г(ф) возрастает с увеличением восстанавливающих факторов.
Рис. 1. ф1 - предельное значение энтропийноэнергетического параметра для идеального процесса, <р2 - предельное значение энтропийноэнергетического параметра для тела с начальным дефектом структуры, <р3 - значение энтропийно-энергетического параметра для восстановительного процесса
Исследование явлений, происходящих за малый промежуток времени с большой скоростью, то есть в начале координат нашей энтропийноэнергетической зависимости, объясняет некоторые указанные выше феномены поведения металлов в экстремальных условиях.
На рис. 2 показано возникновение восстанавливающей составляющей (-1) при значении 1ф = т на комплексной оси.
Рис. 2. Схема, поясняющая возникновения восстанавливающей составляющей (-1) при значении !ср1 = т на комплексной оси
Живой организм представляет собой в высшей степени упорядоченную систему с низкой энтропией. Существование живого организма предполагает непрерывное поддержание энтропии системы на низком уровне, непрерывное противодействие разупрочняющим факторам, вызывающим заболевание. Любой живой организм -это незамкнутая система, активным образом
52
Вестник ЮУрГУ, № 4, 2005
Щуров В.А., Марфицьт В.П., Марфицын А.В., Марфицын С.В.
Анализ экстремальных ситуаций с позиций применения энтропийно-энергетического параметра
взаимодействующая с окружающей средой, непрерывно черпающая из нее негэнтропию [10].
В живой природе имеется защитный энергетический механизм, реагирующий на экстремальные нагрузки. В момент травмы в действие вступают защитные механизмы - стресс-лимитируюгцие системы с развитием охранительного торможения - гипобиоза. После этого происходит включение в работу одновременно большого количества резервных клеток, что сопровождается гипертрофией и гиперплазией соответствующих органов и тканей [7]. Этим процессам соответствует на рис. 1 кривая Ш.
С этих позиций становится понятным механизм ускорения заживления переломов костей конечностей при сочетанной травме головного мозга, когда происходит мобилизация всех систем организма в ответ на травму, дополнительная выработка сомато-тропина, перераспределение необходимых для костеобразования минеральных веществ [2,7, 8].
Количественные исследования возможности и условий появления эффекта стимулирующего влияния повреждения на восстановление сократительной способности мышц, проявляющееся, например, у детей в период пубертатного ускорения роста, необходимо для практического использования этого феномена в ортопедии при оперативном удлинении отстающих в росте конечностей.
На механизме увеличения биомеханических и функциональных параметров мышц, восстанавливающихся после тренирующих воздействий субмаксимальными нагрузками в значительной мере основан процесс силовой тренировки у спортсменов, механизм закаливания при воздействии низких температур. Этот эффект повышения защитных механизмов организма путем преодоления стрессирующих воздействий называется су-перацией и осуществляется на положительном эмоциональном фоне.
Литература
1. Аршавский И.А. Проблема физиологической незрелости и ее значение для антропологии // Вопросы антропологии. -1963. -Вып. 15. - С. 21-32.
2. Галкин В.В., Назаренко Г.И. Актуальные аспекты проблемы прогнозирования в травматологии // Ортопедия, травматология. -1988.-М 1.-С. 1-5.
3. К вопросу повышения сопротивляемости материалов в условиях энергетического минимума / С.В. Марфицын, А.В. Марфицын, В.И. Макаров,
B.П. Марфицын // Курганский госуниверситет. -Курган, 1996. Рукопись деп. в ВИНИТИ №1883-В96.
4. Никитюк, Б.А. Факторы роста и морфофункционального созревания организма. — М.: Наука, 1978. - 144 с.
5. О возможности учета трещин при оценке ресурса корпусов арматуры / С. В. Марфицын, А.В. Марфицын, В И. Макаров, В.П. Марфицын // Курганский госуниверситет. — Курган, 1996. Рукопись депонирована в ВИНИТИ№2304-В97.
6. О применимости энтропийно-энергетических критериев при оценке ресурса сталей с радиационным повреждением / В.К. Коротовских,
C.В. Марфицын, А.В. Марфицын, В.П. Марфицын // Курганский госуниверситет. - Курган, 2004. Рукопись депонирована в ВИНИТИ №1250-В2004.
7. Особенности консолидации переломов длинных трубчатых костей при травматическом поражении головного мозга / В.Е. Крылов,
A.Г. Грубер, А.Г. Алексеев и др. // Современные аспекты чрескостного остеосинтеза по Илиза-рову: Материалы науч. конф. - Казань, 1991. -С. 95-96.
8. Особенности репаративного остеогенеза длинных костей, сочетанного с мозговой травмой: Тезисы докл. IV-го конгр. Международной ассоциации морфологов / В. А. Литовчен-ко, Е.В. Мирошниченко, НИ. Шеститко,
B.Д. Карамышев // Морфология. - 1988. - Т. 113. -№ 3. - С. 71-72.
9. Схема учета энтропийно-энергетических комплексных соотношений при оценке ресурса / В.К. Коротовских, В.П. Марфицын, А.В. Марфицын, С.В. Марфицын // Курганский госуниверситет. - Курган, 2001. Рукопись депонирована в ВИНИТИ Ж958-В2001.
10. Тарасов А.В. Мир, построенный на вероятности. -М.: Просвещение, 1984. —141 с.
11. Imms F.J. The effects of stress on the growth rate and food and water inter intakeof rats // J. Endocrinol. -1967. - V. 37. -№ 1. -P. 1-8.
12. Nash D.F. Effects of radiation at weaning on growth of inbred and hybred mice // Growth. -1968. -V. 32.-№4.-P. 297-310.
Серия «Образование, здравоохранение, физическая культура», выпуск 5
53