АНАЛИЗ ЭФФЕКТИВНОСТИ ВЕРТИКАЛЬНЫХ ОБРАЗОВАТЕЛЬНЫХ ПОРТАЛОВ
А.В. Силаев, ассист. каф. Технических и информационных средств систем
управления Тел.: (495) 434-93-70, E-mail: tipman@mail.ru Московский государственный институт радиотехники, электроники
и автоматики (МИРЭА) http://www.fcyb.mirea.ru
Article consists of examining efficiency of vertical educational portals which enter a horizontal portal. It based on semantic-entropy characteristics with application of the Theory of Systems and Synergetrics.
В настоящее время намечаются серьезные тенденции к неизбежному возрастанию количества информационных образовательных порталов, принципиально отличающихся друг от друга не только разными уровнями, но и технологическими базами.
Совокупностью образовательных порталов управляет единый, с дирекционными признаками, горизонтальный портал, а далее основные направления конфигурируют вертикальные порталы. От каждого из них строятся многослойные ярусы портальных библиотечных, сетевых и других обустройств, которые должны эффективно и взаимосвязанно работать.
Но при такой разрозненности и количестве порталов вопрос об эффективности всего консорциума создаваемых информационных систем может быть разрешен только с использованием системообразующих начал в проблеме управления. Проблема управления должна закладываться еще на этапе проектирования. Для этого необходимо определить те ключевые позиции, от которых зависят эффективность и унифицированность. И хотя оба эти признака могут находиться в противоречии, необходим поиск некоторого компромисса. Ведь стремление к унификации может привести к снижению эффективности и к разрастанию инертной части, нагружающей портальное обустройство, и, наоборот, погоня за повышением динамических свойств эффективности может привести к отчуждению отдельных элементов портального строительства от систе-
мы в целом. Эта взаимосвязь, мера совокупности или мера отчуждения, наиболее полно и ясно описывается в последние годы в теории систем понятием «информационный морфизм».
Под информационным морфизмом, согласно работам таких известных ученых, как Н.Н. Заличев, В.П. Кулагин, А.Г. Финогеев и других [1-6], понимается протяженный во времени процесс взаимозависимого изменения параметров информационного объекта и информационного пространства, его окружающего. Причем реализация функционала информационного морфизма возможна в условиях проектирования и сопровождения многочисленных взаимосвязанных систем при соблюдении трех важнейших компонент и признаков проектирования: онтологического, языкового/кроссплатформенного и управленческого. Это показано в работах Е.Г. Гридиной, А.Д.Иванникова, В.П. Кулагина, А.Н.Тихонова и В.А. Мордвинова [6,7].
Создание методики, позволяющей эффективно управлять качественно-количественными характеристиками информационных образовательных порталов, позволит проводить контентную оценку уже существующих вертикальных образовательных порталов и с ее помощью улучшать возможность их интеграции, а также проектировать принципиально новые портальные конструкции.
Задачи повышения эффективности управления на основе анализа неполной информации возникают в самых различных сферах деятельности: в образовании, экономике, экологии, медицине и др. Характерной особенностью таких задач является то, что для их решения и выработки некоторого управленческого воздействия наличие полной информации не является критически
важным. Вместе с тем, при разработке программных средств, предназначенных для решения таких задач, факт неполноты исходных данных имеет принципиальное значение.
Таким образом, исследование нацелено на выявление методов, позволяющих оценивать и регулировать информационный мор-физм, т.е. эффективность функционирования систем. В результате появляются методические и алгоритмические решения для инженерной проектной деятельности, модерации порталов.
Благополучное разрешение методических и алгоритмических задач опирается, в том числе, на создание и использование новых улучшенных инфологических решений в портальном строительстве. Любой отдельно взятый вертикальный образовательный портал имеет как систему управления в вышестоящей иерархии, так и нижестоящие звенья, которые он конфигурирует в своей части отображения. Это очевидно, уже исходя из того, что любая информационная система в ее системном понимании с точки зрения эмерджентности должна быть частью большей поглощающей системы, и, наоборот, любая система содержит частные составляющие, которые могут реализовывать-ся в виде самостоятельных информационных систем нижестоящего уровня.
Все эти отождествления, трансформации, переходы наиболее полно описываются функционалом в виде информационного морфизма, а поскольку речь идет исключительно о документальных системах (если говорить об образовательных порталах), а вовсе не о фактографических, то приоритетным вопросом регулирования эффективности является вопрос о регулировании семантики, т.е. об онтологическом соглашении управления в рамках трехуровневого системного соглашения. Поэтому понятие информационного морфизма так или иначе выливается в понятие энтропийно-семантических оценок.
В качестве основополагающего понятия автором предложено ввести математическое описание функционала ИПС, воспользовавшись для этого близкой по смыслу формулой из известной работы А.И. Михайлова, А.И. Черного, Р.С. Гиляревского [8]. С позиций качественных оценок информационных порталов ее обобщенный вид можно записать следующим образом:
5 = / (Ьг, Я),
где S - обобщенный функционал документальной ИПС;
Lr - функционал взаимодействия (информационный морфизм);
р- критерий оценки качества.
Здесь под величиной р, критерием оценки качества, могут пониматься традиционно применяемые в исследованиях информационных систем (порталов) величины: пертинентность, релевантность, когнитив-ность, континуальность и др. Точнее, количественную критериальную оценку такого рода дают не сами релевантность, перти-нентность и т.п., а отображающие их широко распространенные в теории информационных систем коэффициенты точности, полноты, шума и т. д.
В работах ряда авторов [6,8] показано, что наибольшее значение для оценки обобщенного функционала могут иметь в основном пертинентность и релевантность, хотя приводимые ниже подходы могут по аналогии распространяться и на другие показатели. Представленный функционал информационного морфизма Lr, отражая энтропийно-семантические характеристики и сущность портала, может поглощать критерий перти-нентности или релевантности, равно как и их совокупность. Тогда можно заявить две (для пертинентности и релевантности) формулы, описывающие функционал вертикального портала в его информационном окружении с соответствующими информационными процессами и явлениями в нем.
Следовательно, по пертинентности функционал имеет вид:
SPer = f(Lr Per > (Per),
где SPer - обобщенный функционал документальной ИПС;
Lr Per - функционал взаимодействия (информационный морфизм) по пертинент-ности;
pPer - критерий оценки качества по пер-тинентности;
по релевантности функционал можно записать следующим образом:
SRel = f (LrRel , (Rel),
где SRel - обобщенный функционал документальной ИПС;
Lr Rel - функционал взаимодействия (информационный морфизм) по релевантности;
pRel - критерий оценки качества по релевантности.
В самом общем случае применительно к вертикальным образовательным порталам функционал Lr описывается как функция
комплексного переменного обобщенного информационного морфизма, в составе которой действительная часть отображает характеристику нагруженности информационной системы е, а мнимая часть отождествлена с энтропийной характеристикой Н, мерой достоверности функционирования информационной системы (особенно ИПС), то есть Ьг = е + Н,
где е и Н - комплексные числа вида х + ¡у, £ + ¡), а символы ¡, Ч - мнимые единицы, таблица умножения которых задается в следующем виде:
" = ЧЧ = ~1> ¡Ч = Л = к, (¡])2 = ф)2 = к2 = 1.
Таким образом, пространственный комплекс Ьг можно рассматривать как векторную сумму двух плоских комплексов: Ьг = е + ЧН = (х+ ¡у) + + ¡п). Комплексы е и Н будут являться действительной и мнимой частью пространственного комплекса Ьг:
е = Яе Ьг = Яе (е + ЧН,), Н = 1т Ьг = 1т (е + ЧН). Если Н = 0, то комплекс Ьг плоский и равен е. Если е = 0, то комплекс Ьг пространственно мнимый и равен ЧН.
Два пространственных комплексных числа равны, если равны их мнимые и действительные части:
ерег + ЧНрег = еяе1 + ЧНяе1 , тогда и только тогда, когда
еРег = еЯе1 , НРег = НЯе1 -
В свою очередь, информационный мор-физм онтологических (документальных) информационных систем согласно [1, 4] имеет следующее математическое описание:
У =_О_
где V, - коэффициент информационного морфизма ¡-го потока между двумя системами А и В, обменивающимися информационными потоками; С, - относительное количество информации в дуплексном информационном потоке между А и В; Еа, Еь - относительные распределения информации в потоках; Ьag - коэффициент Лагранжа; gAi, gBi -характеристические коэффициенты информационных потоков.
Математическое описание функционала вертикального образовательного портала информационной системы в виде комплексной переменной, где действительная часть отображает нагрузочную характеристику, а
мнимая - меру неопределенности, энтропию, позволило объединить единым математическим выражением эти характеристики с позиций комплексных чисел. Этот подход определяется принципиальной позицией, согласно которой эти характеристики точно так же, как и в термодинамике, где они зародились, не дают исчерпывающей оценки информационного состояния объекта или явления вне их совокупного рассмотрения.
Характеристика нагруженности, как уже было показано выше, отображает физическое состояние объекта в смысле его ре-сурсоемкости, нагруженности, мощности и других вещественных характеристик, свойственных сложным техническим и информационным системам. Энтропийные же оценки применительно к вертикальным порталам отображают меру стохастичности в семантическом плане, причем имеют много разновидностей в зависимости от оцениваемого явления: энтропия Больцмана, эпсилон-энтропия, обобщенная и относительная энтропия, скалярная и векторная энтропия, информационная энтропия, энтропия потока. Эти разновидности энтропийных оценок принципиально разделяет на две группы принадлежность с точки зрения информационного морфизма к аддитивным и неаддитивным системам. В самом общем виде, с позиций теории вероятностей [9], для систем с аддитивными признаками формула энтропии может быть записана следующим образом:
где Н(Х) - энтропия системы; X, р, - вероятность пребывания системы X в состоянии ¡.
При объединении этих позиций мы получаем в самом общем виде совокупную формулу для качественной оценки вертикальных порталов как информационно-поисковых систем, или показатель технической эффективности:
5 " ? - (*> - V
Предложенный показатель эффективности следует в дальнейшем рассматривать с позиций релевантности и пертинентности. Разработанный инструментарий призван снизить трудозатраты на разработку информационных систем в образовании и открывает путь к созданию многоузловых портальных конструкций различной природы. В
Отечественный и зарубежный опыт
частности, в рамках исследования будут заявлены несколько типов таких элементов, что является предметом патентования в отраслевом фонде алгоритмов и программ. Область применения результатов работы не
ограничивается рамками сферы образования. Изложенные методики могут применяться в смежных отраслях с целью повышения эффективности информационных систем аналогичных конструкций.
Литература
1. Финогеев А.Г. Синергетика информационных процессов в виртуальном образовательном пространстве // Открытое образование. - 2003. - № 3. - С 47-54.
2. Заличев Н.Н. Энтропия информации и сущность жизни. - М.: Радиоэлектроника, 1995. - 192 с.
3. Кулагин В.П., Найханов В.В., Овезов Б.Б., Роберт И.В. и др. Информационные технологии в сфере образования, - М.: Янус-К, 2004. - 248 с.
4. Авдеев С. Синергетика информационных взаимодействий// Ростовская электронная газета. - № 19. - 8 октября 2000., www.relga.rsu.ru.
5. Мордвинов В. А. Аналитические обзоры по основным направлениям развития высшего образования / НИИВО. -Вып. 3. - М., 2004 . - 55 с.
6. Мордвинов В. А., Петров К.А. Онтология информационных систем. Отраслевой фонд алгоритмов и программ. Свидетельство об отраслевой регистрации разработки № 4895 от 06.08.2004.
7. Радаев В.В., Гридина Е.Г., Иванников А. Д., Кондаков А.М.и др. / Интернет-порталы: содержание и технологии: Сб. научн. ст. - Вып. 2 / Редколл.: Тихонов А.Н. (пред.) и др.; ГНИИ ИТТ «Информика» . -М.: Просвещение, 2004. - 499 с.
8. Михайлов А.И., Черный А.И., Гиляревский Р.С. Основы информатики, . - М.: Наука, 1968.
9. Вентцель Е.С. Теория вероятностей. - М.: Высшая школа, 1998 . - 576 с.
10.Мордвинов В.А., Матчин В.Т. // Информсреда в образовании. - Ч.3. - Проектирование и сопровождение ИС в образовании. - 167 с.
11.Хакен Г. Информация и самоорганизация: Макроскопический подход к сложным системам/ Пер.с англ. - М.: Мир. - 1991. - 240 с.
12.Jaynes E.T.Information Theory and Statistical Mechanics //Phisical Review, 1957. -v.108. -№2. -Р.171-190.
13.Цымбал Л.А. Синергетика информационных процессов. - М.: Наука 1995. - 118 с.
14.Вильсон А. Дж.. Энтропийные методы моделирования сложных систем. - М.: Наука-1978. - 248 с.
К ВОПРОСУ О СТУДЕНЧЕСКОЙ МОБИЛЬНОСТИ
Г.А. Краснова, д.фил.н., проф., директор Института дистантного образования, зав.каф. Информационных технологий в образовании Тел. (495) 434-65-01, E-mail: krasnova@pfu.edu.ru Российский университет дружбы народов http://www.ido.rudn.ru П.С. Аветисян, к.ф.-м.н., проректор Тел.: (374 10) 26-28-11, (374 10) 63-42-19, E-mail:pavetisyan@rau.am Российско-армянский университет http://www.rau.am
About export of education which becomes one of the most profitable branches of economy, both in
financial, and in the strategic plan.
Международное образование является одним из наиболее быстрорастущих экспортных секторов. Всемирный рынок образования оценивается в 1,5 трлн долларов. При этом глобальный спрос на высшее образование составляет 97 млн мест, а спрос на международное высшее образование равняется 1,8 млн мест. По прогнозам IDP Education Australia, к 2025 году спрос на международное образование стремительно увеличится и составит 262 млн мест, при этом доля высшего образования будет со-
ставлять не менее 7,2 млн мест. Исходя из данных исследования, экспорт образования станет одной из наиболее прибыльных отраслей экономики, как в финансовом, так и в стратегическом плане. Это продиктовано тем, что студенческая мобильность отражается не только на цифрах финансовых показателей, связанных с затратами на обучение и необходимыми расходами на проживание. Трудоустройство по окончании вуза и возможная натурализация в стране обучения являются не менее важными факторами,