Научная статья на тему 'АНАЛИТИЧЕСКАЯ АППРОКСИМАЦИЯ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЛИКВИДУСОВ ДЛЯ НЕРАВНОВЕСНЫХ МНОГОКОМПОНЕНТНЫХ ЭВТЕКТИЧЕСКИХ СИСТЕМ'

АНАЛИТИЧЕСКАЯ АППРОКСИМАЦИЯ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЛИКВИДУСОВ ДЛЯ НЕРАВНОВЕСНЫХ МНОГОКОМПОНЕНТНЫХ ЭВТЕКТИЧЕСКИХ СИСТЕМ Текст научной статьи по специальности «Физика»

CC BY
29
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭВТЕКТИКА / ИЗОТЕРМЫ / КОНЦЕНТРАЦИЯ / ТЕМПЕРАТУРА ПЛАВЛЕНИЯ / АППРОКСИМАЦИЯ / ТРЕХКОМПОНЕНТНЫЕ СИСТЕМЫ / ДВУХКОМПОНЕНТНЫЕ СИСТЕМЫ / ЛИКВИДУС / ЭНТАЛЬПИЯ

Аннотация научной статьи по физике, автор научной работы — Афанасьева Ольга Сергеевна, Афанасьева Елена Андреевна, Егорова Галина Федоровна

В первой части статьи рассматриваются способы аналитической аппроксимации кривых ликвидуса для двухкомпонентных и трехкомпонентных систем и их визуализации средствами компьютерной графики. Для двухкомпонентных систем предлагается методика приближенного построения кривых ликвидуса, основанная на аппроксимации их полиномами первой и второй степени. Сравниваются диаграммы плавкости, полученные с помощью решения системы Шредера Ле Шателье и кривых ликвидуса, построенных на основе их приближения полиномами. Приводится значение максимального отклонения этих аппроксимаций друг от друга. Отдельно рассматриваются погрешности диаграмм плавкости двух систем: Ba(ClO4)2-KClO4 и BaF2-BaSO4, полученных экспериментальным путем и построенных с помощью системы уравнений Шредера Ле Шателье и аппроксимации их полиномами первой и второй степени. Во второй части статьи предлагается методика построения поверхностей ликвидусов для трехкомпонентных систем, основанная на предложенных авторами приближенных формулах вычисления характеристик эвтектик двухкомпонентных и трехкомпонентных систем и линейной аппроксимации изотерм трехкомпонентных систем. На основе предложенной процедуры аппроксимации созданы программы расчета состава и температуры эвтектики для двухкомпонентных систем и построения изотерм трехкомпонентных систем в визуальной среде программирования Delphi с пользовательским интерфейсом. Приводится таблица погрешностей расчетов характеристик эвтектик для трехкомпонентных систем. Представлены результаты визуализации численного моделирования поверхностей ликвидуса для трехкомпонентных эвтектических систем и сравнения их с экспериментально полученными образцами поверхностей кристаллизации для двух систем: Ba(ClO4)2-KClO4 и BaF2-BaSO2.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Афанасьева Ольга Сергеевна, Афанасьева Елена Андреевна, Егорова Галина Федоровна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ANALYTICAL APPROXIMATION AND NUMERICAL SIMULATION OF LIQUIDUS FOR NON-EQUILIBRIUM MULTI-COMPONENT EUTECTIC SYSTEMS

In the first part of the article, the methods of analytic approximation of melting curves for two-component systems and their visualization by means of computer graphics are considered. For two-component systems, a method is proposed for the approximate construction of a melting curve, based on their by approximation of polynomials of the first and second degree. The diagrams obtained by solving the Schroeder Le Chatelier system and the liquidus curves constructed on the basis of their approximation by polynomials are compared. The value of the maximum deviation of these approximations from each other is given. The errors of the diagrams of two systems are considered separately: Ba(ClO4)2 - KClO4 and BaF2 - BaSO4, obtained experimentally and constructed using a system of Schroeder Le Chatelier equations and their approximation by polynomials of the first and second degree. In the second part of the article, a method is proposed to construct crystallization surfaces for three-component systems based on the approximate formulas for calculation eutectic characteristics of the two-component and three-component systems, and the linear approximations of the three-component systems isotherms. Based on the proposed approximation procedure, a method for calculating the composition and temperature of eutectic for two-component systems, and the construction of three-component system isotherms in the Delphi visual programming environment with the user interface is created. The table of errors of the eutectic characteristics calculations for three-component systems is given. The results of visualization of numerical simulation of liquidus surfaces for three-component eutectic systems and their comparison with experimentally obtained samples of crystallization surfaces for two systems: Ba(ClO4)2 - KClO4 and BaF2 - BaSO2 are presented.

Текст научной работы на тему «АНАЛИТИЧЕСКАЯ АППРОКСИМАЦИЯ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЛИКВИДУСОВ ДЛЯ НЕРАВНОВЕСНЫХ МНОГОКОМПОНЕНТНЫХ ЭВТЕКТИЧЕСКИХ СИСТЕМ»

ВЕСТН. САМАР. ГОС. ТЕХН. УН-ТА. СЕР. ТЕХНИЧЕСКИЕ НАУКИ. 2022. Т. 30. № 1

doi: 10.14498/tech.2022.1.1

Информатика, вычислительная техника и управление

УДК 541.123/.123.8/9

АНАЛИТИЧЕСКАЯ АППРОКСИМАЦИЯ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЛИКВИДУСОВ ДЛЯ НЕРАВНОВЕСНЫХ МНОГОКОМПОНЕНТНЫХ ЭВТЕКТИЧЕСКИХ СИСТЕМ

О. С. Афанасьева, Е.А. Афанасьева, Г. Ф. Егорова

Самарский государственный технический университет Россия, 443100, г. Самара, ул. Молодогвардейская, 244

E-mail: afa_samara@inbox.ru

Аннотация. В первой части статьи рассматриваются способы аналитической аппроксимации кривых ликвидуса для двухкомпонентных и трехкомпонентных систем и их визуализации средствами компьютерной графики. Для двухкомпонентных систем предлагается методика приближенного построения кривых ликвидуса, основанная на аппроксимации их полиномами первой и второй степени. Сравниваются диаграммы плавкости, полученные с помощью решения системы Шредера Ле Шателье и кривых ликвидуса, построенных на основе их приближения полиномами. Приводится значение максимального отклонения этих аппроксимаций друг от друга. Отдельно рассматриваются погрешности диаграмм плавкости двух систем: Ba(ClO4)2-KClO4 и BaF2—BaSO4, полученных экспериментальным путем и построенных с помощью системы уравнений Шредера Ле Шателье и аппроксимации их полиномами первой и второй степени. Во второй части статьи предлагается методика построения поверхностей ликвидусов для трехкомпонентных систем, основанная на предложенных авторами приближенных формулах вычисления характеристик эвтектик двухкомпонентных и трехкомпонентных систем и линейной аппроксимации изотерм трехкомпонентных систем. На основе предложенной процедуры аппроксимации созданы программы расчета состава и температуры эвтектики для двухкомпонентных систем и построения изотерм трехкомпонентных систем в визуальной среде программирования Delphi с пользовательским интерфейсом. Приводится таблица погрешностей расчетов характеристик эвтектик для трехкомпонентных систем. Представлены результаты визуализации численного моделирования поверхностей ликвидуса для трехкомпонентных эвтектических систем и сравнения их с экспериментально полученными образцами поверхностей кристаллизации для двух систем: Ba(ClO4)2—KClO4 и BaF2-BaSO2.

Афанасьева Ольга Сергеевна, доцент кафедры «Прикладная математика и информатика», кандидат технических наук.

Афанасьева Елена Андреевна, аспирант кафедры «Прикладная математика и информатика».

Егорова Галина Федоровна, доцент, кандидат технических наук.

Ключевые слова: эвтектика, изотермы, концентрация, температура плавления, аппроксимация, трехкомпонентные системы, двухкомпонентные системы, ликвидус, энтальпия.

Введение

Целью исследования фазовых состояний химических многокомпонентных систем является не только определение их количественных характеристик, но и в идеале прогнозирование и создание новых композиций с заданными свойствами. Экспериментальное получение диаграмм плавкости двухкомпонентных и поверхностей ликвидусов трехкомпонентных систем представляет собой затратный по времени и трудовым ресурсам процесс. Результаты исследовательской работы химиков-экспериментаторов демонстрируют, что для большинства реальных систем прогнозирование диаграмм плавкости оказывается принципиально невозможным в виду бесконечного разнообразия свойств химических соединений. Тем не менее, как показывают исследования [1-9], существует целый класс химических соединений, для которых расчет, основанный на выявлении аналитических зависимостей между термическими характеристиками, позволяет вычислять характеристики эвтектик и поверхностей ликвидусов как для двух-компонентных, так и для трехкомпонентных систем. Главным требованием к таким системам является наличие у них единственной точки эвтектики. Это требование, в частности, выполняется для трехкомпонентных систем при том условии, что входящие в их состав бинарные системы являются эвтектическими (с наличием единственной точки эвтектики). Поскольку двухкомпонентных систем, удовлетворяющих этому требованию, огромное количество, то проблема аналитического оценивания и компьютерного моделирования фазовых портретов трехкомпонентных систем остается актуальной.

Построение ликвидусов для двухкомпонентных систем с помощью численной аппроксимации

Рассмотрим вопросы построения графиков кривых ликвидуса для двухком-понентных систем аналитическими методами. Хорошо известна система уравнений Шредера Ле Шателье:

1п х = -

ДН

(

Я

1 1

1п (1 - х ) = -

Л

Т

К11

ДН 2

Т

Я

11

Т

К1 2

(1)

Т

здесь ДН1, ДН2, Я - энтальпии плавления первого и второго компонентов и универсальная газовая постоянная соответственно; х1, х2 - мольные доли первого и второго компонентов; Т1, Т2, Т - температуры плавления компонентов и искомая температура термодинамического равновесия соответственно.

Система (1) позволяет определять не только мольные доли компонентов и температуру эвтектики, но и строить ветви ликвидуса для двухкомпонентных систем [1-3]:

Т _

АН, - 1п (1 - х) RTl' (2)

Т _ АН2Т2 ( )

АН2 - 1п ( х) RT2

Погрешность результатов его применения, как и любого численного метода, существенным образом зависит от точности значений коэффициентов, входящих в уравнения системы. Поскольку в эту систему уравнений в качестве параметров входят кроме температур плавления также и значения энтальпии (теплоты) плавления компонентов, которые имеются не во всей справочной литературе, то это обстоятельство препятствует широкому использованию метода в практике предварительного исследования систем. В работе [10] предлагался метод прогнозирования значений температуры и состава эвтектик для бинарных систем на основе известных температур плавления компонентов систем:

( Л

Т2 - Т

Тэ - Т

1 - Т

(Т + Т )2

2 э х2 _ 1 - х1. (3)

Т + Т2 - 2Т

12 э

12) J

Здесь х1, х2 - мольные доли первого и второго компонентов; Т1, Т2, Тэ - температуры плавления компонентов и искомая температура термодинамического равновесия соответственно. Были произведены расчеты для 25 систем с вычислением соответствующих погрешностей. Для температуры использовалась оценка точности с помощью относительной погрешности

|Тэ - Т| 5Т _-'

Т

для концентраций использовалась среднеквадратическая, несмещенная оценка погрешности

Ах _ 2 V(х1 - хх1 )2 + (х2 - х2 )2 + (х3 - х3 )2 •

Здесь Т - вычисленные значения температуры эвтектики; Тэ - экспериментально полученное значение температуры эвтектики; х1, х{ - экспериментальные

и вычисленные значения концентраций компонентов системы. Сравнение результатов расчетов с помощью системы (1) и по формулам (3) для 25 систем показали, что среднее арифметическое погрешностей решений для системы Шредера Ле Шателье составляют 5 % по температуре и 6 % по составу, а по формулам (3) - 6 и 7 % соответственно. В связи с тем, что погрешности численной процедуры, предложенной в работе [10], и результатов расчетов с использованием системы (1) оказались сопоставимыми, поскольку их средние значения разнятся на 1 %, была продолжена работа по исследованию зависимости температуры систем от соотношения концентраций ее компонентов.

На рис. 1 видно, что если отразить симметрично относительно ветвей ликвидуса, аппроксимированных отрезками прямых, параболу, проходящую через три точки (0,Т ), (х2,Тэ) , (1,Т2) , известные из расчетов по формулам (3), то верхние ветви этих кривых будут качественно совпадать по поведению с экспериментальными линиями ликвидуса. Понятно, что погрешность такого приближения велика и необходим весовой коэффициент, который позволит приблизить значения этих ветвей к значениям ликвидуса с допустимой погрешностью, не превы-

шающей 10-15 %. Для определения величины или порядка этого коэффициента можно использовать выражения для ветвей ликвидуса (2). Рассмотрим первое из них, считая, что Т, - вещество с меньшей температурой плавления:

Т =

ДИ, - 1п (1 - х) ЯТ,

Рис. 1. Диаграмма плавкости двухкомпонентной системы: 1 - исходная парабола; 2 - симметричная парабола; 3 - парабола с весовым коэффициентом; 4 - отрезок прямой ТэТ2

Воспользуемся тем, что для более тугоплавкого компонента х < 0.5 и 1п(1 - х) « х , его можно преобразовать к следующему виду:

ТТ 1 _ 1

Т =

1 - 1п (1 - х) ЯТ,/ ДИ1 1 - хЯТ,/ ДИ,'

ЯТ

Учитывая также, что для большинства химических соединений -< 1,

ДИ,

можно записать дробь в правой части в виде ряда Т « т

1 ЯТ, 2 1 + х—L + х2 ДИ,

2

Г ЯТ, Л

ЧДИ1 У

1 ЯТ, 2 1 + х—L + х2 ДИ,

Г ЯТ, Л 2 ( х5 Г ЯТ, Л 5 Л

+ О

1ДИ1 У V VДИ1 У У

. (4)

Аналогичную процедуру можно произвести с другой ветвью. В результате вычи-

получаем оценку разности

ЯТ, 1 + х- 1

ДИ,

тания из (4) его линейной части Т « Т,

V У

между линейной и квадратичной аппроксимациями этой ветви ликвидуса:

22 ,2 ЯТ, ) , ^ ЯТ, м2 Г ЯТ, Л

т - т « т,

х

Г ЯТ, Л

ЧДИ1У

1 ЯТ, 2 1 + х—L + х2 ДИ,

у

Таким образом, значения линии параболы, соединяющей две известные точки, отличаются от отрезка прямой линии, проведенной через те же точки, на величину

x2Tx

f RT1 ^

22

< 0,25

( RT1 ^

KAHi

T < 0,25T .

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Исходя из предположения, что max T1 < 3500 °С и (T — T) < (T1 — T3)< 1000 °С, коэффициент, на который следует умножать эту

разность и который обеспечит достижение максимальной относительной погрешности значений разности

T — T

-< 0,06,

T — T3

должен иметь порядок величины x^ - квадрата мольной доли тугоплавкого компонента в системе. Запишем формулы, соответствующие параметрам полиномов первой и второй степени, проходящих через три известные точки (0,TJ),

(Х2, Тэ), (1,T2):

k = ^ ; bi = Ti; Ti = bi — k x; a = — T — (T — T) Х2 — T ;

Х2 ^^i Х2

T — T

T = ax2 + bx + c ; b = T2 — Ti — a; c = T ; k2 = —-- ;

xi

b2 = Ti3; T2 = b2 + k2 (x — x2).

Тогда ветви ликвидуса будут выражаться следующими формулами зависимости температуры от концентрации веществ:

T = T +(T — T )(x2 )2, 0 < x < x2;

/ -ч 2 (5)

T = T2 +(T2 — T)(x2) , x2 <x<i.

Для 8 систем проводилось сравнение полученных с помощью данной процедуры аппроксимаций ликвидусов с кривыми ликвидусов, построенными с помощью системы уравнений Шредера Ле Шателье. Результаты расчетов систем показали довольно существенные расхождения в значениях температур и соответствующих концентраций. Максимальное расхождение в значениях графиков кривых было выявлено для системы CsCl - CsF и составило i57 °С по температуре и 0,ii по мольным долям компонентов эвтектики.

Для систем Ba(QO4)2-KClO4 и BaF2-BaSO4 представлены диаграммы плавкости, полученные экспериментально [ii, i2] и с помощью аналитических расчетов по формулам (5) и уравнений Шредера Ле Шателье (табл. i и 2).

Таблица i

Расчет систем Ba(ClO4)2-KClO4 по формулам (5) и уравнениям Шредера Ле Шателье

AH (КДж/моль) AH / R T плавления

Ba(ClO4)2 9,87 1187,00 473

KClO4 i0,77 1295,49 570

T3 - уравнение Шредера xi - уравнение Шредера T3 - формулы (5) x1 - формулы (5)

393 0,71 375 0,67

400

300

""-У

\ч _ . •. \ — / 3 /

\

0

0.2

0.4

0.6

0.8

Хг

Рис. 2. Максимальные отклонения от экспериментальных данных (кривая 1) системы Ва(СЮ4)2-КСЮ4 расчетных кривых по уравнению Шредера (кривая 2) - 28,8 °С и формулам (5) (кривая 3) - 37,5 °С

Таблица 2

Расчет систем BaF2—BaSO4 по формулам (5) и уравнениям Шредера Ле Шателье

АН (КДж/моль) АН / Я Т плавления

BaF2 17,50 2149,88 1332

BaSO4 41,00 5036,86 1580

Тэ - уравнение Шредера х1 - уравнение Шредера Тэ - формулы (5) х1 - формулы (5)

1117 0,73 1053 0,65

■— / _ ^

2 _ ^ * / _ ✓ * / ' у/

1300

900

500

0

0.2

0.4

0.6

0.8

Х\

Рис. 3. Максимальные отклонения от экспериментальных данных (кривая 1) системы BaF2-BaSO4 расчетных кривых по уравнению Шредера (кривая 2) -229 °С и формулам (5) (кривая 3) - 107 °С

Как видно из рис. 2 и 3, отклонения кривых ликвидуса, вычисленных с помощью уравнений Шредера Ле Шателье и формул (5), имеют один порядок, но графики, визуализирующие квадратичные аппроксимации (5), имеют большее число точек пересечения с обеими ветвями экспериментальных кривых. Основным выводом из проведенной работы можно считать, что несмотря на погрешности численного моделирования предварительное теоретическое исследование позволяет значительно уменьшить интервалы значений концентраций и температур, для которых имеет смысл проведение экспериментов, что может позволить значительно сократить время и энергетические затраты на исследование систем опытным путем.

Построение изотерм для трехкомпонентных систем с помощью линейной аппроксимации

Разработанная процедура априорной визуализации кривых ликвидуса для двухкомпонентных систем привела к созданию простого способа предварительного прогнозирования поведения изотерм для трехкомпонентных систем. В основу разработки метода была положена гипотеза о том, что в эвтектической системе содержание легкоплавкого и тугоплавкого компонентов должно зависеть от соотношения их температур плавления, причем линейно. Линейная аппроксимация термодинамических зависимостей является распространенной практикой исследования различных физико-химических процессов [13-17]. В данном случае это позволило бы облегчить построение изотерм в трехкомпонентной системе и отобразить качественную картину их расположения в целом.

Предлагаемый алгоритм линейной аппроксимации изотерм двухкомпонент-ных эвтектических систем иллюстрируется примером, представленным на рис. 4.

Рис. 4. Линейная аппроксимация эвтектики двухкомпонентной системы KCl-KBO2

Введем обозначение для концентрации эвтектики данной двухкомпонентной системы: KBO2- x1 и для KCl- (1 - x1) соответственно. Температура состава KBO2-KCl в зависимости от изменения концентрации KBO2- x будет вычисляться по формулам

(Т - Тэ) x

T = Т +-

или

Т = Т -

(Т -Тэ):

x

На участке, расположенном правее точки эвтектики, концентрация компонента KBO2 будет равна (x1 + x), KCl соответственно (1 - x1 - x), поэтому температура состава будет вычисляться по формулам

(T2 - T ) x

T - Тэ + ^-^ (7)

1 - x

или

T - T2 (T2 -T)(1 - x - x) .

1 - x1

Таким же образом с использованием зависимостей (6) и (7) между температурами эвтектик и концентрациями можно приближенно вычислять значения промежуточных температур на сторонах треугольника Гиббса и вдоль прямых, соединяющих вершины треугольника с точками (в том числе и эвтектическими) на противоположных сторонах. В результате оказывается возможным программно рассчитывать значения температур в любых точках внутри треугольника и строить на их основе изотермы в качестве отрезков прямых, соединяющих точки на сторонах треугольника и проходящих через секущие, связывающие вершины с точками эвтектик на противоположных сторонах. На основе предложенной методики линейной аппроксимации была разработана программа в визуальной среде программирования Delphi, позволяющая строить приближенную поверхность кристаллизации в треугольнике Гиббса.

В данной программе для расчетов используются только значения температур плавления, входящих в систему веществ. Промежуточные вычисления, однако, требуют знания значений составов концентраций и температур эвтектик бинарных систем, входящих в качестве компонентов низшей размерности в исследуемую трехкомпонентную систему, а также состава и температуры ее эвтектики. Процедура вычисления вспомогательных значений составов и температур эвтек-тик бинарных систем в предлагаемой программе производится по формулам из статьи авторов [10]. Так, вычисление температуры эвтектики и концентрации тугоплавкого компонента для двухкомпонентной системы (KBO2 на рис. 4) осуществляется по формулам

T2

x x2 - 1 ;

T + T

12

T3 « T x1 + T x1 (1 - x1 )-T1 x1 (1 + x2 )-T1 (1 - x22 ) ,

уточненное значение концентрации легкоплавкого компонента

T2 - T3 x - 2 э

1 T + T2 - 2T,

Здесь Т1, Т2, Тэ - соответственно температуры плавления 1-го и 2-го компонентов и температура эвтектики; х1, х2 - содержание 1-го и 2-го компонентов в мольных долях.

Для вычисления температур эвтектики и ее состава для трехкомпонентных систем использовались формулы из [18]:

Т1-2 (т1-3 + т2-3 + Т \

-1-2-3 _ 1э Уэ _

э

Г,

T + T2 + T3

T2 _ T 1_2-3

c =

Тэ1-2 + T3 _ 2T

1-2-3 '

Концентрации двух других веществ определяются по формулам

_ 1-2 _ 1-2 _ 1-2 _ 1-2

С2 Х2 Х2 С3 , С3 ,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где T , ТЭ-к, (i, к _ 1,2,3) - температуры плавления компонентов и температуры

эвтектик в двухкомпонентных системах соответственно; Тэ1-2-3 - температура

эвтектики в трехкомпонентной системе; хг^к , ci, i, k _ 1,2,3 - содержание i-го

компонента в мольных долях в двухкомпонентных и трехкомпонентной системах.

На рис. 5 представлены поверхности ликвидуса из справочника [19], построенные с помощью вычисленных программой значений. Экспериментально полученные значения температуры эвтектики трехкомпонентной системы и концентрации входящих в нее веществ равны соответственно: 640 °С, KCl - 56 %, KBO2 - 30 %, K2SO4 - 14 %. На рис. 5, б представлены вычисленные значения мольных долей компонентов, нижняя, верхняя и усредненная оценка температуры эвтектики и изотермы, построенные с помощью разработанной программы.

а б

Рис. 5. Изотермы: а - из справочника [14]; б - построенные с помощью линейной аппроксимации (погрешность составляет по температуре 1 % и по составу 1 %)

Для температуры использовалась оценка точности с помощью относительной погрешности

8T _

- (T + T)-T

(8)

для концентраций использовалась среднеквадратическая, несмещенная оценка погрешности

Лх _ i^x -Х1)2 + (Х2 -Х2)2 + (Х3 -Х3)2 .

(9)

Здесь Т - нижняя и Ти - верхняя оценки, вычисленные по программе значения температуры эвтектики; Т - экспериментально полученное значение температу-

ры эвтектики; х1, х - экспериментальные и вычисленные по программе значения концентраций компонентов системы.

В качестве характерного примера на рис. 6 представлены экспериментально построенные изотермы и поверхность кристаллизации, рассчитанная с помощью программы для системы LiB02/NaB02/Mg(B02)2.

а б

Рис. 6. Изотермы: а - из справочника [14]; б - построенные с помощью линейной аппроксимации (погрешность по температуре 3 %, по составу 3 %)

Особенностью программы является предпочтительное использование шкалы Кельвина при значительной разнице в значениях температур плавления, входящих в состав системы веществ.

В таблице 3 представлены погрешности результатов расчетов изотерм для 30 трехкомпонентных систем в сравнении с данными из [19, 20].

Таблица 3

Погрешности результатов расчет трехкомпонентных систем

Название Погрешность Название Погрешность

веществ по темпе- по соста- веществ по темпе- по соста-

системы ратуре, % ву, % системы ратуре, % ву, %

К/^04/а/В02 1 1 Се/Ыа^п//С1 1,2 5

и/ма/соз 2 9 СеУРе^п//С1 0,1 4

ш/к/и/^ 8 4 Са/Ьата//С1 8 7

Ва/Ыа/Сз/ХР 0,1 6 Ь/М^г/УР 6 14

Са/К/№Ш03 0,1 7 ш//сш^04/а 5 7

Ва№/Са/^ 4 5 Ш/Ш3/СУР 1 4

ЬШа^г/^ 3 5 Ш/С1/Р207^04 4 4

ьш§/ма//в02 3 3 Ш/С1МР207 5 7

К/Ыа^г/УР 1 12 К//Р04/Р207^04 1 9

Cs/K/Na//N03 1 7 Ba/Ca/Na//F 7 6

Cs/K/Na//Br 4 1 H20-Nh4N03-KN03 5 6

Са/ЬШа/УГ 5 7 H20-Nh4N03-NaN03 5 7

Са/Ь/М^/Р 2 2 Н20-Ш^3-КЖ>3 7 3

К/Ы^г/УР 7 2 C0(NH2)2-NaN03-KN03 4 6

Ь14/К4/Ма4//Р207 8 8 N//0^04^ 11 2

Средние погрешности 5 6

Результаты сравнения поверхностей ликвидусов для 30 эвтектических систем из справочника [19] и монографии [20] показали, что принципиального, качественного расхождения в картинах расположения изотерм не наблюдается. Средняя погрешность по концентрациям составила 6 %, по температуре 5 %. Для 30 исследованных авторами поверхностей ликвидусов погрешности по температуре не превысили 11 %, среди погрешностей по концентрациям для одной из систем она составила 14 %.

Представленные результаты позволяют говорить о несомненной эффективности использования численного моделирования изотерм и их линейной аппроксимации с точки зрения минимизации подтверждающих экспериментов и визуализации поверхностей ликвидусов.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Аленова СМ., Колядо А.В., Гаркушин И.К. Исследование фазовых равновесий в двух-компонентных системах, содержащих адипиновую, глутаровую, азелаиновую, себаци-новую кислоты // Proceedings: International Conference on thermal analysis and Calorimetry in Russia (RTAC - 2016). Vol. I. St. Petersburg: SPbPU Publisher, 2016. C. 536-539.

2. Аленова СМ., Колядо А.В., Гаркушин И.К. Диаграммы системы из двухосновных органических кислот: адипиновой, глутаровой, себациновой // Журн. физ. химии. 2016. Т. 90. № 6. С. 964-968.

3. Аленова СМ., Колядо А.В., Гаркушин И.К. Исследование фазовых равновесий в системе из двухосновных органических кислот: адипиновой, глутаровой, себациновой // Изв. Саратовского университета. Новая серия. Сер. Химия, Биология, Экология. 2016. Т. 16. № 3. С. 270-273.

4. Brunet Luc E., Caillard Jean, Andre Pascal. Thermodynamic Calculation of n-component Eu-tectic Mixtures // International Jornal of Modern Physics World Scientific. 2004. Vol. 15(5). P. 675-687.

5. Hakeem Muhammed, Olawale Amuda, Akabekwa Raymond Otito. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry // Leonardo Journal of Sciences. 2008. Issue 12. P. 232-242.

6. Rahman I., Das A.Kr., Mankar R.B., Kulkarni B.D. Evaluation of repulsive particle swarm method for phase equilibrium and phase stability problems // Fluid Phase Equilibria. 2009. Vol. 282. No. 2. P. 65-67.

7. Shcherban A.P., Datsenko O.A., Kovtun G.P. Construction of Solidus Lines of Binary Metal Systems Having a Low Solubility of Components in the Solid Phase // Open Journal of Metal. 2014. Vol. 4. P. 65-71.

8. Davies R.H., Dinsdale A.T., Gisby J.A. MTDATA / Thermodynamic and Phase Equilibrium Software from the National Physical Laboratory // CALPHAD. 2002. Vol. 26, № 2. P. 229271.

9. Verdieva Z.N., Alkhasov A.B., Verdiev N.N., Rabadanov G.A., Arbukhanova P.A., Isken-derovE.G. Фазовые равновесия в системе (LiF)2 - Li2CO3 - Li2SO4 // Изв. высших учебных заведений. Сер.: Химия и химическая технология. 2018. № 62(1). С. 20-25. https://doi.org/10.6060/ivkkt.20196201.5727

10. Афанасьева О.С., Егорова Г.Ф., Моргунова О.Е. Расчет состава и температур эвтектик двухкомпонентных систем по известным температурам плавления исходных веществ // Вестн. Самар. госуд. техн. ун-та. Сер.: Физ.-матем. науки. 2009. № 1(18). С. 228-238.

11. Диаграммы плавкости солевых систем: Справочник. Ч. II. Двойные системы с общим анионом. Под ред. В.И. Посыпайко. М.: Металлургия, 1977. 303 с.

12. Диаграммы плавкости солевых систем: Справочник. Ч. III. Двойные системы с общим катионом. Под ред. В.И. Посыпайко, Е.А. Алексеевой, Н.А. Васина. М.: Металлургия, 1979. 208 с.

13. Борщевский А. Я. Физическая химия. Т. 1. М.: Инфра, 2017. 868 с.

14. Базаров И. П. Термодинамика. СПб.-М.-Краснодар: Лань, 2010. 384 с.

15. Стромберг А.Г., Семченко Д.П. Физическая химия: Учеб. для хим. спец. вузов. М.: Высш. шк., 2006. 527 с.

16. Atkins P., Jones L. Chemical Principles: The Quest for Insight (4th ed.). W. H. Freeman and Company, 2008. 236 pp.

17. Белов Г.В. Термодинамика. Ч. 2. М.: Юрайт, 2016. 384 с.

18. Афанасьева О.С., Егорова Г. Ф. Расчет состава и температур эвтектик трех- четырехком-понентных систем по известным характеристикам двухкомпонентных систем // Вестн. Самар. госуд. техн. ун-та. Сер.: Физ.-матем. науки. 2011. № 1(25). С. 134-145.

19. Диаграммы плавкости солевых систем: Справочник. Ч. IV. Тройные системы. Под ред. В.И. Посыпайко, Е.А. Алексеевой, Н.А. Васина. М.: Химия, 1977. 392 с.

20. Моргунова О.Е., Трунин А.С. Электронный генератор фазовых диаграмм физико-химических систем. Самара: СамГТУ, 2006. 136 с.

Статья поступила в редакцию 11 ноября 2021 г.

ANALYTICAL APPROXIMATION AND NUMERICAL SIMULATION OF LIQUIDUS FOR NON-EQUILIBRIUM MULTI-COMPONENT EUTECTIC SYSTEMS

O.S. Afanaseva, E.A. Afanaseva, G.F. Egorova

Samara State Technical University

244, Molodogvardeyskaya st., Samara, 443100, Russian Federation E-mail: afa_samara@inbox.ru

Abstract. In the first part of the article, the methods of analytic approximation of melting curves for two-component systems and their visualization by means of computer graphics are considered. For two-component systems, a method is proposed for the approximate construction of a melting curve, based on their by approximation of polynomials of the first and second degree. The diagrams obtained by solving the Schroeder Le Chatelier system and the liquidus curves constructed on the basis of their approximation by polynomials are compared. The value of the maximum deviation of these approximations from each other is given. The errors of the diagrams of two systems are considered separately: Ba(ClO4)2 - KClO4 and BaF2 - BaSO4, obtained experimentally and constructed using a system of Schroeder Le Chatelier equations and their approximation by polynomials of the first and second degree. In the second part of the article, a method is proposed to construct crystallization surfaces for three-component systems based on the approximate formulas for calculation eutectic characteristics of the two-component and three-component systems, and the linear approximations of the three-component systems isotherms. Based on the proposed approximation procedure, a method for calculating the composition and temperature of eutectic for two-component systems, and the construction of three-component system isotherms in the Delphi visual programming environment with the user interface is created. The table of errors of the eutectic characteristics calculations for three-component systems is given. The results of visualization of numerical simulation of liquidus surfaces for three-component eutectic systems and their comparison with experimentally obtained samples of crystallization surfaces for two systems: Ba(ClO4)2 — KClO4 and BaF2 - BaSO2 are presented.

Keywords: eutectics, isotherms, concentration, melting point, approximation, three-component, two-component systems, liquidus, enthalpy.

REFERENCES

1. Alenova S.M., Kolyado A.V., Garkushin I.K. Issledovanie fazovyh ravnovesij v dvuh-komponentnyh sistemah, soderzhashchih adipinovuyu, glutarovuyu, azelainovuyu, sebaci-novuyu kisloty // Proceedings: International Conference on thermal analysis and Calorimetry in Russia (RTAC - 2016). Vol. I. St. Petersburg.: SPbPU Publisher. 2016. P. 536-539.

2. Alenova S.M., Kolyado A.V., Garkushin I.K. Diagrammy sistemy iz dvuhosnovnyh organi-cheskih kislot: adipinovoj, glutarovoj, sebacinovoj // Zhurn. fiz. himii. 2016. V. 90. № 6. P. 964-968.

3. Alenova S.M., Kolyado A.V., Garkushin I.K. Issledovanie fazovyh ravnovesij v sisteme, iz dvuhosnovnyh organicheskih kislot: adipinovoj, glutarovoj, sebacinovoj // Izv. Saratovskogo universiteta. Novaya seriya. Ser. Himiya, Biologiya, Ekologiya. 2016. V. 16. № 3. P. 270-273.

Olga S. Afanaseva, (PhD. Sci. (Techn.)), Associate Professor. Elena A. Afanaseva, Postgraduate Student Galina F. Egorova, (PhD. Sci. (Techn.)), Associate Professor. 18

4. Brunet Luc E., Caillard Jean, Andre Pascal. Thermodynamic Calculation of n-component Eutectic Mixtures // International Jornal of Modern Physics World Scientific. 2004, 15(5). P. 675-687.

5. Hakeem Muhammed, Olawale Amuda, Akabekwa Raymond Otito. Estimating the Eutectic Composition of Simple Binary Alloy System Using Linear Geometry // Leonardo Journal of Sciences. 2008. Issue 12. P. 232-242.

6. Rahman I., Das A.Kr., Mankar R.B., Kulkarni B.D. Evaluation of repulsive particle swarm method for phase equilibrium and phase stability problems // Fluid Phase Equilibria. 2009. Vol. 282. No. 2. P. 65-67.

7. Shcherban A.P., Datsenko O.A., Kovtun G.P. Construction of Solidus Lines of Binary Metal Systems Having a Low Solubility of Components in the Solid Phase // Open Journal of Metal. 2014. Vol. 4. P. 65-71.

8. Davies R.H., Dinsdale A.T., Gisby J.A. MTDATA / Thermodynamic and Phase Equilibrium Software from the National Physical Laboratory // CALPHAD. 2002. Vol. 26, № 2. P. 229271.

9. Verdieva Z.N., Alkhasov A.B., Verdiev N.N., Rabadanov G.A., Arbukhanova P.A., IskenderovE.G. Fazovye ravnovesiya v sisteme (LiF)2 - Li2CO3 - Li2SO4 // Izv. vysshih uchebnyh zavedenij. Ser. Himiya i himicheskaya tekhnologiya. 2018. Vol. 62(1). P. 20-25. https://doi.org/10.6060/ivkkt.20196201.5727

10. Afanaseva O.S., Egorova G.F., Morgunova O.E. Raschet sostava i temperatur evtektik dvuhkomponentnyh sistem po izvestnym temperaturam plavleniya iskhodnyh veshchestv // Vestn. Samar. gosud. tekhn. un-ta. Ser.: Fiz.-matem. nauki, 2009, № 1(18). P. 228-238.

11. Diagrammy plavkosti solevyh sistem: Spravochnik. Part II. Dvojnye sistemy s obshchim anionom. Pod red. V.I. Posypajko. M.: Metallurgiya, 1977. 303 pp.

12. Diagrammy plavkosti solevyh sistem: Spravochnik. Part III. Dvojnye sistemy s obshchim ka-tionom. Pod red. V.I. Posypajko, E.A. Alekseevoj, N.A. Vasina. M.: Metallurgiya, 1979. 208 pp.

13. BorshchevskijA.Ya. Fizicheskaya himiya. Vol. 1. M.: Infra, 2017. 868 pp.

14. Bazarov I.P. Termodinamika. SPb.-M. -Krasnodar: Lan', 2010. 384 pp.

15. Stromberg A.G., Semchenko D.P. Fizicheskaya himiya: Ucheb. dlya him. spec. vuzov. M.: Vyssh. shk., 2006. 527 pp.

16. Atkins P., Jones L. Chemical Principles: The Quest for Insight (4th ed.). W.H. Freeman and Company, 2008. 236 pp.

17. Belov G. V. Termodinamika. Part 2. M.: YUrajt, 2016. 384 pp.

18. Afanaseva O.S., Egorova G.F. Raschet sostava i temperatur evtektik trekh- chetyrekhkom-ponentnyh sistem po izvestnym harakteristikam dvuhkomponentnyh sistem // Vestn. Samar. gosud. tekhn. un-ta. Ser.: Fiz.-matem. nauki, 2011. № 1(25). P. 134-145.

19. Diagrammy plavkosti solevyh sistem: Spravochnik. Part IV. Trojnye sistemy. Pod red. V.I. Posypajko, E.A. Alekseevoj, N.A. Vasina. M.: Himiya, 1977. 392 pp.

20. Morgunova O.E., Trunin A.S. Elektronnyj generator fazovyh diagramm fiziko-himicheskih sistem. SamGTU: Samara, 2006, 136 pp.

i Надоели баннеры? Вы всегда можете отключить рекламу.