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Abstract

To obtain reliable estimates of population parameters, data that is sampled for estimation must accurately
represent the underlying population. Sampled data that is representative of the underlying population
depends also on the sampling technique that was used in obtaining them. This is very important since
sampling bias could lead to over or under estimation of parameters. Ranked Set Sampling is considered to
be a better alternative to the classical sampling designs in obtaining such data. Ranked Set Sampling
is designed to minimize the number of measured observations required to achieve a desired precision in
making inferences, and thus it is more economical to use for the purposes of estimation, compared to the
classical sampling designs. This is also an added advantage in cases where it is difficult to obtain data.
Many estimators have been developed recently for the estimation of finite population mean under ranked
set sampling. This paper aims to improve estimation by modifying an existing estimator using a simple
linear combination of the known population mean, square root of the known coefficient of variation, and
the known median of an auxiliary variable. The theoretical properties of the proposed estimator, such
as the bias and mean squared error were derived up to the first order of approximation, using Taylor’s
expansion. The bias, mean squared error, absolute relative bias, and the relative efficiency were used as
means of evaluation and comparison between the proposed modified estimator and its competitors. The
R software was used to aid computations. Empirical applications to real data showed that the proposed
modified estimator is superior to the competing estimators that were compared since it has least bias, the
least mean squared error, the least absolute relative bias, and the highest relative efficiency in all sample
sizes that were considered. The bias and mean squared error of the modified estimator under Ranked Set
Sampling was found to be smaller than those of the existing estimators that were compared. Hence it is
more efficient and capable of providing reliable estimates than the existing estimators that were compared
and so we recommend that it should be used in survey estimations.
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1. Introduction

Over the years, researchers have been preoccupied with the development of new estimators for
finite heterogeneous population mean with the aim of reducing the associated bias and MSE
of existing estimators to the barest minimum [1, 5, 9, 16]. For reliable estimates, data that is
employed for estimation must be representative of the underlying population. Sampled data
that is representative of the underlying population depends also on the sampling method [18].
Sampling bias could lead to over or under estimation of population parameters. Consequently,
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one field of interest currently has been in the area of identifying designs that generate repre-
sentative samples for super populations. Estimation of finite population mean has been based
disproportionately on the classical sampling designs, especially simple random sampling (SRS).
However, the SRS procedure as noted by [3] is incapable of generating representative samples for
certain populations. The consequence, as noted by [10] is that, a specific sample which is not truly
representative of the underlying population can possibly be included for estimation, and that can
lead to unreliable estimates. Therefore, to improve accuracy and precision in the estimation of
finite population mean, sampling procedures which do not suffer such weaknesses as the SRS
must be considered. Among the sampling methods, the Ranked Set Sampling (RSS) technique is
a good alternative to SRS for obtaining data that are truly representative of the population under
study [2]. The goal of RSS is to collect observations that are more likely to span the full range
of values in the population and therefore produces more representative samples than SRS [10].
RSS was first introduced by [12] and was used to estimate pasture yield. RSS was introduced
for circumstances where difficulty exist in taking actual measurements for sample units. [17]
established the statistical methodology for RSS.

The procedure for obtaining a ranked set sample is briefly outlined by the following steps:

1. Randomly select a sample of size m2 from the targeted population.

2. Distribute the m2 selected units in m sets, each of size m.

3. Rank the units within each set with respect to the attribute of interest, using the judgement
of an expert or by the aid of an auxiliary variable that is correlated with the study variable.

4. Select the ith ranked unit from the ith set for actual measurement of the attribute of interest,
in the order i = 1, 2, 3, ..., m.

5. Repeat steps i to iv for r cycles if it is desired to obtain a sample of size, n = mr.

RSS is preferred when mechanisms are readily available for ranking a set of sample units, whether
by the use of an auxiliary variable, or by the use of the judgement of an expert. [7] proved that the
ranked set sample mean is an unbiased estimator for population mean, even in cases of imperfect
ranking. [10] adduced that an auxiliary variable, X could be used to rank any variable under
study, Y in cases where judgement ranking of Y is difficult. Consequently, a lot of estimators have
been developed under RSS, employing a variety of auxiliary variables for ranking.

[16] introduced the classical ratio estimator under RSS. Several other authors have since extended
the work of [16], employing a variety of auxiliary variables. [11] suggested a modified ratio
estimator for population mean under RSS utilizing the quartile deviations and the known mean
of an auxiliary variable. [4] proposed a generalized ratio estimator for population mean under
RSS using the known population mean of an auxiliary variable and some pre-assigned constants.
[13] suggested a modified ratio-cum-product estimator for finite population mean under RSS
using the known population information on the mean, the coefficients of variation and of kurtosis
of an auxiliary variable under RSS. [15] proposed a ratio-type estimator for population mean
under RSS, using the known population mean and quartiles of an auxiliary variable. [8] proposed
a ratio-type estimator under RSS based on known population mean and population deciles of an
auxiliary variable.[9] proposed a generalised ratio-type estimator based on RSS, employing known
parameters of the population such as the coefficients of variation, kurtosis and skewness as well
as the mean of the auxiliary variable. [14] suggested a ratio type estimator of population mean
based on RSS employing the known coefficient of variation, known median, as well as the known
population mean of the auxiliary variable. These estimators were more efficient and superior
to their competitors. Not withstanding, the existing estimators wield significant biases and are
fraught with large mean squared errors. Therefore, this study sought to improve estimation by
modifying an existing estimator of finite population mean that was based on RSS.
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2. Review of Existing Estimators

Suppose the study variable Y and the auxiliary variable, X are positively correlated. Then [16]
expressed the classical ratio estimator of population mean under RSS as

ȳR,RSS = ȳ[n]

(
X̄

x̄(n)

)
(2.1)

where

Bias (ȳR,RSS) = Ȳ
[
θ
(

C2
x − ρCxCy

)
−
(

W2
x(i) −Wyx(i)

)]
(2.2)

MSE (ȳR,RSS) = Ȳ2
[
θ
(

C2
x − 2ρCxCy + C2

y

)
−
(

W2
x(i) − 2Wyx(i) + W2

y[i]

)]
(2.3)

Through out of this study,

W2
x(i) =

1
r

m
∑

i=1

(
µx(i)−X̄

mX̄

)2
, W2

y[i] =
1
r

m
∑

i=1

(
µy[i]−Ȳ

mȲ

)2
, Wyx(i) =

m
∑

i=1

(µy[i]−Ȳ)(µx(i)−X̄)
m2rȲX̄ , θ = 1

mr , C2
x = s2

x
X̄2

and C2
y =

s2
y

Ȳ2 .

[13] modified the classical ratio estimator of population mean under RSS respectively using Cx
and β2(x) as

ȳM1,RSS = ȳ[n]

[
X̄ + Cx

x̄(n) + Cx

]
(2.4)

and

ȳM2, RSS = ȳ[n]

[
X̄Cx + β2(x)

x̄(n)Cx + β2(x)

]
. (2.5)

with the respective biases

B (ȳM1,RSS) = Ȳ
[
θ
(

ϕ2C2
x − ϕρCxCy

)
−
(

ϕ2W2
x(i) − ϕWyx(i)

)]
(2.6)

B (ȳM2,RSS) = Ȳ
[
θ
(

υ2C2
x − υρCxCy

)
−
(

υ2W2
x(i) − υWyx(i)

)]
(2.7)

and the respective MSEs

MSE (ȳM1, RSS) = Ȳ2
[
θ
(

ϕ2C2
x + C2

y − 2ϕρCxCy

)
−
(

ϕ2W2
x(i) + W2

y[i] − 2ϕWyx(i)

)]
(2.8)

MSE (ȳM2, RSS) = Ȳ2
[
θ
(

υ2C2
x + C2

y − 2υρCxCy

)
−
(

υ2W2
x(i) + W2

y[i] − 2υWyx(i)

)]
(2.9)

where

ϕ =
X̄

X̄ + Cx

υ =
X̄Cx

X̄Cx + β2 (x)

[14] used the coefficient of variation (Cx) and the median of an auxiliary variable (Md) to propose
a ratio-type estimator of population mean as

ȳP, RSS = ȳ[n]

[
X̄ + Cx Md

x̄(n) + Cx Md

]
. (2.10)
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with the respective bias and MSE as

B (ȳP,RSS) = Ȳ
[
θ
(

λ2C2
x − λρCxCy

)
−
(

λ2W2
x(i) − λWyx(i)

)]
(2.11)

and

MSE (ȳP, RSS) = Ȳ2
[
θ
(

λ2C2
x + C2

y − 2λρCxCy

)
−
(

λ2W2
x(i) + W2

y[i] + 2λWyx(i)

)]
(2.12)

where

λ =
X̄

X̄ + Cx Md

3. The Proposed Estimator

Motivated by [14], this study proposes modified ratio-type estimator for finite population mean
under Ranked Set Sampling, which utilizes the coefficient of variation (Cx) and the median (Md)
of the employed auxiliary variable as

ȳB,RSS = ȳ[n]

[
X̄ + Md

√
Cx

x̄(n) + Md
√

Cx

]
. (3.1)

Using large sample properties, the following assumptions are made: ȳ[n] = Ȳ (1 + e0) and
x̄(n) = X̄ (1 + e1), where E (e0) = E (e1) = 0.
Therefore, equation (3.1) evolves as

ȳB,RSS = ȳ[n]

[
X̄ + Md

√
Cx

X̄ (1 + e1) + Md
√

Cx

]
= ȳ[n]

[
X̄ + Md

√
Cx

X̄ + Md
√

Cx + X̄e1

]

= ȳ[n]

 1

1 +
(

X̄
X̄+Md

√
Cx

)
e1


= ȳ[n]

(
1

1 + ωe1

)
where

ω =
X̄

X̄ + Md
√

Cx
.

Now,

ȳB, RSS = ȳ[n]

(
1

1 + ωe1

)
= Ȳ (1 + e0) (1 + ωe1)

−1.

Assuming |ωe1| < 1 and using Taylor’s expansion to the second order,

ȳB, RSS = Ȳ (1 + e0)
(

1−ωe1 + ω2e2
1 + ...

)
= Ȳ

(
1−ωe1 + ω2e2

1 + e0 −ωe0e1 + ...
)

.

Therefore the bias of the proposed estimator is obtained as

B (ȳB, RSS) = Ȳ
[
ω2E

(
e2

1

)
−ωE (e0e1)

]
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⇒ B (ȳB, RSS) = Ȳ
[
ω2
(

θC2
x −W2

x(i)

)
−ω

(
θρCxCy −Wyx(i)

)]
= Ȳ

[
θ
(

ω2C2
x −ωρCxCy

)
−
(

ω2W2
x(i) −ωWyx(i)

)]
(3.2)

The mean squared error of the proposed estimator is obtained as

MSE (ȳB, RSS) = Ȳ2
[
ω2E

(
e2

1

)
− 2ωE (e0e1) + E

(
e2

0

)]
.

⇒ MSE (ȳB, RSS) = Ȳ2
[
ω2
(

θC2
x −W2

x(i)

)
+
(

θC2
y −W2

y[i]

)
− 2ω

(
θρCxCy −Wyx(i)

)]
= Ȳ2

[
θ
(

ω2C2
x + C2

y − 2ωρCxCy

)
−
(

ω2W2
x(i) + W2

y[i] − 2ωWyx(i)

)]
(3.3)

4. Efficiency Comparison

The proposed estimator, ȳB, RSS was compared to the RSS estimators of [13] and that of [14]. The
proposed estimator, ȳB, RSS is more efficient than the estimator of [14] if

MSE (ȳB, RSS) < MSE (ȳP,RSS)

⇒ ω2
(

θC2
x −W2

x(i)

)
− 2ω

(
θρCxCy −Wyx(i)

)
< λ2

(
θC2

x −W2
x(i)

)
− 2λ

(
θρCxCy −Wyx(i)

)
⇒
(

ω2 − λ2
) (

θC2
x −W2

x(i)

)
< 2 (ω− λ)

(
θρCxCy −Wyx(i)

)
Hence, provided ω < λ, the proposed estimator is more efficient than the estimator of [14] if

ρ <
(ω + λ)

(
θC2

x −W2
x(i)

)
+ 2Wyx(i)

2θCxCy
(4.1)

where ρ is the correlation coefficient between the auxiliary variable X and the study variable Y.
Let P = θC2

x −W2
x(i), Q = 2Wyx(i) and R = 2θCxCy. Then the proposed estimator, ȳB,RSS is

respectively more efficient than ȳM1,RSS and ȳM2,RSS if

ρ < [P (ω + ϕ) + Q] /R and ρ < [P (ω + υ) + Q] /R,

where

ω =
X̄

X̄ + Md
√

Cx
, ϕ =

X̄
X̄ + Cx

, υ =
X̄Cx

X̄Cx + β2 (x)
.

5. Empirical Application

The dataset that was used for evaluating the estimators is taken from page 34 of [6] and a general
description is given below.

X : Weekly family income.
Y : Weekly family expenditure.
Objective: To estimate mean weekly family expenditure.
N = 33, X̄ = 72.5454, Ȳ = 27.4909, ρ = 0.2521, Md = 69, β2(x) = 2.1429, Cx = 0.1436, Cy =
0.3629
The ARB of the various proposed estimators were obtained by the formula

ARB =

∣∣∣∣ Bias (ȳi)

Bias (ȳR,RSS)

∣∣∣∣ , (5.1)

where i = (M1,RSS), (M2,RSS), (P,RSS), (B,RSS).
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The Percent Relative Efficiency (PRE) of an estimator ȳi compared to the classical ratio estimator
ȳR of [5], was obtained by

PRE =
MSE (ȳR)

MSE (ȳi)
× 100, (5.2)

where i = (M1,RSS), (M2,RSS), (P,RSS), (B,RSS).

Six ranked set sample sizes were considered with the data for different set sizes m and the
corresponding number of cycles r and the results displayed in Tables 1 to 6. For each case,
corresponding values of W2

x(i), W2
y[i] and Wyx(i) were determined for the sample size n = m× r.

For sample size n = 9, where m = 3 and r = 3, then W2
x(i) = 0.0012, W2

y[i] = 0.0064, Wyx(i) = 0.0028
and the corresponding performance of the various estimators is displayed in Table 1.

Table 1: m=3, r=3

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0668 9.0725 1.0000 100.0

ȳM1, RSS 0.0667 9.0653 0.9985 100.1
ȳM2, RSS 0.0562 8.6695 0.8413 104.6
ȳP, RSS 0.0556 8.6428 0.8323 105.0
ȳB, RSS 0.0433 8.1567 0.6482 111.2

If n = 12 where m = 3, r = 4, then W2
x(i) = 0.0009, W2

y[i] = 0.0050, Wyx(i) = 0.0021 and the
performance of the various estimators is displayed in Table 2.

Table 2: m=3, r=4

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0501 6.6533 1.0000 100.0

ȳM1, RSS 0.0450 6.6478 0.8982 100.1
ȳM2, RSS 0.0418 6.3319 0.8343 105.1
ȳP, RSS 0.0417 6.3310 0.8323 105.1
ȳB, RSS 0.0325 5.9664 0.6487 111.5

If n = 15 where m = 3, r = 5, then W2
x(i) = 0.0007, W2

y[i] = 0.0040, Wyx(i) = 0.0017 and the
performance of the various estimators is displayed in Table 3.

Table 3: m=3, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0412 5.3680 1.0000 100.0

ȳM1, RSS 0.0411 5.3635 0.9976 100.1
ȳM2, RSS 0.0346 5.1103 0.8398 105.0
ȳP, RSS 0.0343 5.1031 0.8325 105.2
ȳB, RSS 0.0267 4.8055 0.6481 111.7

If n = 16 where m = 4, r = 4, then W2
x(i) = 0.0008, W2

y[i] = 0.0044, Wyx(i) = 0.0019 and the
performance of the various estimators is displayed in Table 4.
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Table 4: m=4, r=4

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0431 4.8955 1.0000 100.0

ȳM1, RSS 0.0429 4.8908 0.9954 100.1
ȳM2, RSS 0.0367 4.5020 0.8515 108.7
ȳP, RSS 0.0364 4.5020 0.8445 108.7
ȳB, RSS 0.0291 4.2936 0.6752 114.1

For n = 20 where m = 4, r = 5, then W2
x(i) = 0.0006, W2

y[i] = 0.0036, Wyx(i) = 0.0015 and the
performance of the various estimators is displayed in Table 5.

Table 5: m=4, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0350 3.8559 1.0000 100.0

ȳM1, RSS 0.0349 3.8521 0.9971 100.1
ȳM2, RSS 0.0310 3.6368 0.8857 106.0
ȳP, RSS 0.0296 3.6292 0.8457 106.3
ȳB, RSS 0.0234 3.3685 0.6686 114.5

If n = 25 where m = 5, r = 5, then W2
x(i) = 0.0006, W2

y[i] = 0.0033, Wyx(i) = 0.0013 and the
performance of the various estimators is displayed in Table 6.

Table 6: m=5, r=5

Estimator Bias MSE ARB PRE
ȳR, RSS 0.0275 2.8278 1.0000 100.0

ȳM1, RSS 0.0274 2.8248 0.9963 100.1
ȳM2, RSS 0.0239 2.6750 0.8691 105.7
ȳP, RSS 0.0235 2.6487 0.8545 106.8
ȳB, RSS 0.0190 2.4400 0.6909 115.9

6. Conclusion

The study modified the ratio estimator of [14] and derived the theoretical properties of the
modified estimator up to order O

(
n−1). The modified estimator was compared to the all the RSS

estimators that were considered by [14] using the classical RSS ratio estimator of [16] as the basis
of comparison. Ranked Set Samples various sizes were considered to test the performance of the
various estimators and all sizes, the propsed modified estimator had the last bias and MSE. Com-
pared to the classical RSS ratio estimator of [16], the efficiency of the proposed modified estimator
ranged from 11% to 16% whilst the efficiency of the estimator of [14] ranged from 5% to 8%. The
bias of the proposed modified estimator was also the least in all the sample combinations that
were considered. This study therefore recommend the use of improved estimator for estimation
since it can provide more efficient and more accurate estimates, compared to its competitors.
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	RTA_3_2024-01_Цициашвили
	Introduction
	The error of the first estimate
	The error of the second estimate
	Conslusion

	RTA_3_2024-02_Updated Manuscript
	Introduction
	System Description
	Assumptions and Notations
	Formulation of Artificial Neural Network Mathematical Model of the Continuous Casting System of the Steel Industry

	Results and Discussions
	Conclusion

	RTA_3_2024-03_Toppleone exponentiated Gompertz inverse rayleigh distribution by Bashiru et al
	TOPP-LEONE EXPONENTIATED GOMPERTZ INVERSE RAYLEIGH DISTRIBUTION: PROPERTIES AND APPLICATIONS
	Sule Omeiza Bashiru1, Alaa Abdulrahman Khalaf2 and Alhaji Modu Isa3
	I. Introduction
	II. Methods
	III. Results
	3.1      Simulation
	IV. Discussion

	RTA_3_2024-04_template RTA_Word file  (G-SUD)
	RTA_3_2024-05_template RTA_LaTeX 1338
	Introduction
	Model Description
	Regular Situation
	Critical Situation

	Properties of Intershock Times Under Inflation
	Statistical Properties of the System's Lifetime
	Illustrative Example

	RTA_3_2024-06_template RTA_LaTeX (4)
	Introduction
	Exponential Weighted Moving Averages (EWMA)
	Double exponential weighted moving averages (DEWMA)
	Exponential distribution
	Experimental approach
	Case research with sensitive analysis
	Conclusion

	RTA_3_2024-07_template RTA_LaTeX (3)
	Introduction
	Methods
	OC curve
	Layout of sampling plan
	Sampling Plan
	Simulated sampling plan

	Conclusion

	RTA_3_2024-08_template RTA_LaTeX
	Introduction
	Variance of Kaplan-Meier and Nelson-Aalen Estimators
	Kernel Based Estimation of the Ageing Intensity
	Study on the Effects of Ploidy on the Prognosis of Patients with Mouth Cancer
	Background
	Results

	Conclusion

	RTA_3_2024-09_Stephen-TSStD-RTA
	RTA_3_2024-10_Sine Topp Leone Exponentiated G Family (1)
	1. Introduction
	2. Methods
	3. Results
	3.1 Assessing the Consistency of the Parameter Estimates of the New Family
	4. Discussion
	References

	RTA_3_2024-11_S.V.Rzayeva ,N.M.Piriyeva, I.A.Guseynova
	RTA_3_2024-12_RTA_RBD_21062024
	RTA_3_2024-13_RTA_May27
	INTRODUCTION
	Literature Review
	Contribution

	RELIABILITY BLOCK DIAGRAMS
	Components of an Anti-Drone Laser System 
	Components of a Laser System

	RELIABILITY ANALYSIS OF LASER SOURCE SUBSYSTEM
	Assumption
	Reliability Analysis
	Weibull Distribution
	Rayleigh Distribution
	Exponential Distribution


	ENVIRONMENTAL FACTORS 
	CONCLUSIONS AND FUTURE DIRECTION

	RTA_3_2024-14_RTA- STRATEGIES FOR REPLACEMENT IN WORKFORCE SCHEDULING RELIABILITY MODELS
	Iyappan. M1*, Balaji. M2, R. Saranraj3, G. Sathya Priyanka4
	I. Introduction
	II. Methods
	I. Model
	III. Results
	It is discovered that in the case of the mixed exponential distribution, it is preferable to have fewer recruits at the training grade in order to get promoted sooner. Since a tiny percentage of trainees would survive to be promoted in the case of CLS...
	IV. Discussion
	References

	RTA_3_2024-15_RTA article
	Introduction
	Description of the model and its implementation in real world
	Practical application of the model

	Overview of steady state probabilities
	Probabilities and Notations
	Ergodicity analysis of the model
	The steady state solution

	System performance measures
	Probabilities of system states
	Mean size of a system and orbit
	Mean busy period and the busy cycle

	Stochastic Decomposition and Special cases
	Special cases

	Numerical results
	Conclusion

	RTA_3_2024-16_RTA AMIT 7
	RTA_3_2024-17_RTA (1)
	Introduction
	Bayesian Estimation
	E-Bayesian Estimation
	E-Bayesian Estimation of  under SEL function

	Properties of E-Bayesian Estimation based on SEL function
	Simulation Study
	Conclusion

	RTA_3_2024-18_Research Paper
	Introduction
	Risk in data collection
	Symbols used for population
	Notations in SRSWOR Setup:
	Some usual estimators in SRSWOR

	Double Sampling Approach
	Some existing estimators in double sampling
	Motivation

	Proposed class of Logarithmic-Exponential Type Estimators
	Optimal sub-class of estimators

	Comparison with existing estimators
	Risk function and the Proposed estimator
	Empirical risk based Study
	Conclusion

	RTA_3_2024-19_Ref Revised RTA
	RTA_3_2024-20_PYTHON IMPLEMENTATION OF FUZZY LOGIC FOR ZERO INFLATED POISSON SINGLE SAMPLING PLANS
	RTA_3_2024-21_pp
	Introduction
	 Integrating the Model into Real-life Situations

	Mathematical Description
	 Analysis of queue size distribution
	Equation Governing the System
	Steady State Analysis
	Stability condition
	Performance Assessments
	Particular Cases
	Numerical Results
	Conclusion

	RTA_3_2024-22_FINAL_PERSONALIZED FEATURES BASED STRESS DETECTION WITH HYPERPARAMETER TUNING USING GENETIC ALGORITHM (2)
	RTA_3_2024-23_PDF Manuscript - RTA
	Introduction
	Survey of Literature

	Model description
	Practical justification of the recommended paradigm

	Scrutiny of the steady state probabilities
	Ergodicity Condition
	Theorem
	System of governing equations
	The steady state solution
	Theorem
	Theorem

	Measures of system performance
	System state probabilities
	Average system size and its orbit
	Mean busy period and the busy cycle

	Particular Cases
	Numerical Analysis
	ANFIS Computing

	Cost Optimization
	Particle Swarm Optimization
	Convergence in PSO

	Conclusion

	RTA_3_2024-24_PDF Format
	RTA_3_2024-25_PCA _LN_RTA_13.04.24
	RTA_3_2024-26_pavitra kumari - RTA
	RTA_3_2024-27_paper1 template RTA
	Introduction
	System Description and Assumptions
	 Notations and Symbols
	SYMBOLS FOR THE STATES OF THE SYSTEM

	Transition Probabilities and Sojourn Times
	Mean Sojourn times

	 Analysis of Reliability and MTSF
	Availability Analysis
	 Busy Period Analysis
	Expected Number of Repairs
	Profit Function Analysis
	Estimation of the Parameters, MTSF, And Profit Function
	Classical Estimation
	ML Estimation

	Bayesian Estimation

	 Simulation Study
	Graphical Study
	 Discussion and Conclusion
	 Acknowledgement

	RTA_3_2024-28_Paper_2__Reliability_Theory_and_applications
	Introduction
	Some basic definitions
	The concept of fuzzy distortion function
	Estimation of fuzzy reliability using fuzzy distortion function
	Illustration

	Characterization and some properties of fuzzy distortion function
	Methods for construction of fuzzy distortion function

	Estimation of stress-strength reliability using the weighted probability density function
	Numerical Results

	Sensitivity analysis
	Conclusions

	RTA_3_2024-29_Paper Dehimi RT_A-2024
	Introduction
	Overview and analysis of the proposed framework
	Real-world implementation of the model

	Examination of the probabilities in a steady-state
	Metrics of system performance
	Numerical results
	Cost optimization
	Cost model
	Grey Wolf Optimizer
	Numerical Cost Optimum

	Conclusion

	RTA_3_2024-30_paper 7 COSINE MARSHALl OLKIN RTA FINAL EDITED
	RTA_3_2024-31_Paper
	Introduction
	Description of the model
	The Quasi Birth and Death Process for the Matrix Generations
	Stationary Analysis
	Criteria for stability
	Analysis of Stationary Probability Vector

	Measures of System Performance
	Analysis of Cost function
	Numerical Results
	Illustrative Example 1
	Illustrative Example 2
	Illustrative Example 3

	Conclusion

	RTA_3_2024-32_Optimization_KKY_Article_RTA
	Introduction and literature survey
	Presumptions and notations
	Presumptions
	Notations

	Mathematical Model Formulation
	Solution procedure
	Numerical illustration
	Algorithm
	Example

	Sensitivity analysis
	Conclusion and future directions

	RTA_3_2024-33_On modeling of Biomedical data with Exponentiated Gompertz Inverse Rayleigh Distribution by Sule et al. (2024)
	Sule Omeiza Bashiru1, Alaa Abdulrahman Khalaf2, Alhaji Modu Isa3 and Aishatu Kaigama4
	I. Introduction
	II. Methods
	III. Results
	3.1      Simulation
	IV. Discussion

	RTA_3_2024-34_NEW FINAL RELIBILITY THERORY AND APPLICATION
	RTA_3_2024-35_Muragesh Math RTA_Final
	Introduction
	Literature survey
	Methodology
	Problem statement
	Deterministic model
	Proposed method: Gradient computation in the approximated problem
	Global convergence of the projected gradient method

	Computational experiments
	Conclusion

	RTA_3_2024-36_Manuscript on ESLD in RTA final
	I. Introduction
	II. Methods
	III. Results
	IV. Discussion
	References

	RTA_3_2024-37_6-8-2024 Final version Manuscript IPLPS family
	RTA_3_2024-38_length biased distn (6)
	RTA_3_2024-39_LBSD DISTRIBUTION
	RTA_3_2024-40_Krupenev-Pyatkova_new
	RTA_3_2024-41_KE-RTA 3
	Introduction
	Maximum Likelihood Estimation
	EM Algorithm

	Bayesian Estimation
	 Lindley approximation method

	Simulation Study
	Illustrations using real data
	Conclusion

	RTA_3_2024-42_Journal  Format
	Introduction
	Methods
	Application of the Model
	System-governing definitions and equations. 
	The Time-Dependent Solution for Generating Queue Functions: 
	The steady-state results
	Performance metrics
	The numerical results
	CONCLUSION

	RTA_3_2024-43_IDD (3)
	INTRODUCTION
	METHODS
	Proposed Distribution
	Some Mathematical properties
	Quantile Function
	Moments
	Moment Generating Function
	Survival Function 
	Hazard Function
	Renyi's Entropy
	Order Statistics 
	Estimation


	RESULTS AND DISCUSSION
	Simulation
	Applications

	Conclusion

	RTA_3_2024-44_IBR1 article RTA pdf
	RTA_3_2024-45_GLD Paper
	RTA_3_2024-46_FLVPP - Dual simplex method(1)
	RTA_3_2024-47_ETAD-RTA
	RTA_3_2024-48_CGG_VBG_Manuscript_RTA-A4
	RTA_3_2024-49_Bello
	RTA_3_2024-50_baysian_Kwmd N
	Introduction
	Methodological Procedure
	Extension of Jeffrey's prior
	Inverse-gamma prior
	Loss functions
	Squared error loss function
	Precautionary loss function
	Al-Bayyati's loss function
	Stein's loss function


	Parametric Estimation of KWMBD
	Maximum Likelihood Estimation
	 Baye's Estimator under Extension of Jeffrey's Prior
	Baye's Estimator under squared error loss function
	Baye's Estimator under precautionary Loss function
	Baye's Estimator under Al-Bayyati's loss function
	Baye's Estimator under combination of Stein's loss function

	 Baye's Estimator under Inverse-Gamma Prior
	Baye's Estimator under squared error loss function
	Baye's Estimator under precautionary Loss function
	Baye's Estimator under Al-Bayyati's loss function
	Baye's Estimator under combination of Stein's loss function

	Simulation Study
	Fitting of real life data-set

	Conclusion

	RTA_3_2024-51_Bayesian Paper RTA Template-revised2
	RTA_3_2024-52_Bayesain_EIRD
	RTA_3_2024-53_Availability
	RTA_3_2024-54_Article
	RTA_3_2024-55_AN IMPROVED ESTIMATOR OF FINITE POPULATION MEAN UNDER RANKED SET SAMPLING
	Introduction
	Review of Existing Estimators
	The Proposed Estimator
	Efficiency Comparison
	Empirical Application
	Conclusion

	RTA_3_2024-56_Adegoke et al- IGD
	Introduction
	Inverse Gompertz Distribution
	Bayesian Estimation Techniques
	Likelihood Function
	Prior Distribution
	Posterior Distribution
	Loss Functions
	Lindley Approximation
	Bayes estimates of the parameters of IGD and its reliability 

	Simulation Study
	Real life Application

	Conclusion

	RTA_3_2024-57_A two-parameter Aradhana distribution with applications to reliability engineering (3)
	RTA_3_2024-58_5mm (6)
	Introduction
	 Exponentiated Generalized Frechet Distribution
	Conditional Repetitive Group Sampling Plan (CRGS) Based on Truncated Life Test
	Conditions for the application of CRGS 
	Operating procedure of Conditional Repetitive Group Sampling plan
	Minimum Sample Size
	Operating Characteristic Function
	Producer`s Risk Ratio

	Applications
	Numerical Illustration
	Real Data Study

	Construction of tables
	 Conclusion

	RTA_3_2024-59_1361 template RTA_LaTeX
	Introduction
	Model description
	Statistical and mathematical properties of PIML distribution
	Moments and moment generating function
	Conditional moment, mean deviation, mean residual life and Bonferroni and Lorenz curves
	Entropy
	Stress-strength Reliablity
	Order statistics

	Parametric estimation of the parameters of PIML distribution
	Classical estimation
	Bayesian estimation

	Comparison via Monte-Carlo Simulation
	Simulation results using mean squared errors, Bayes risks and nominal coverage probability as the criterion.

	Applications
	Concluding Remarks

	RTA_3_2024-60_1348_Paper
	Introduction
	Model Description
	Analysis
	Construction of the QBD process for our Model
	Stability condition
	The steady state probability vector

	System characteristics
	Cost Analysis
	Numerical Implementation
	Illustrative 1
	Illustration 2
	Illustrative 3

	Conclusion





