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ABSTRACT 
This paper introduces Bayesian analysis and demonstrates its application to parameter 
estimation of the Poisson regression via Markov Chain Monte Carlo (MCMC) algorithm using 
roommate conflict data. The Bayesian Poisson regression estimation is compared with the 
classical Poisson regression. Both the classical Poisson regression and the Bayesian 
Poisson regression provide similar results and suggest that the frequency of roommate 
conflicts decreases with family size, number of roommates one has and being in a love 
relationship. The results also show a reduction of standard errors associated with some 
coefficients obtained from the Bayesian analysis, thus bringing greater stability to the 
coefficients. It is concluded that Bayesian Poisson regression estimation via MCMC 
algorithm offers an alternative framework for modelling roommate conflict data. 
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The Poisson regression model has been applied extensively to model count data as 
demonstrated in Winkelmann (1994), Winkelmann and Zimmermann (1991;1995), Cameron 
and Trivedi (1986; 1996), Winkelmann (2000;2008), Jun (2018), Land et al. (1996) and 
Acquah (2016). For example, Acquah (2016) applied the Poisson regression model to 
investigate the relationship between frequency of conflicts as the dependent variable and 
gender, age, family size, roommates of different religion, prior experience in a boarding 
house, number of roommates one has, years of education, being in a love relationship, 
number of sibling and remittance as the covariates. The classical Poisson regression results 
suggest that prior experience in a boarding house and number of Sibling is associated with 
increased roommate conflicts whilst family size, number of roommates one has and being in 
a love relationship are associated with a reduction in roommate conflict. Despite it wide 
spread application, the assumptions of the Poisson regression model turn out to be 
unrealistic. More specifically, the Poisson model involves the assumption that the mean is 
equal to the variance and, therefore, the model cannot account for the empirical regularity 
that count data are over-dispersed. 

A fundamental research question which remains is that, is there an alternative method 
that can model the roommate conflict data without the limitation of the classical Poisson 
regression model and will it lead to similar results and conclusion. The foregoing discussion 
point to the fact that there is a need to employ a flexible model that overcome the limitations 
of the classical Poisson model in  analysing roommate conflict data. 

In order to overcome the limitations inherent in the classical estimation of the Poisson 
regression model, this paper introduces the Bayesian Poisson Regression modelling as an 
alternative approach. The Bayesian Poisson regression model offers increase flexibility that 
can provide substantial added value in the analysis of count data. This added value arises 
essentially from two factors.  First, the Bayesian estimation is flexible and does not require 
compliance with demanding assumptions as suggested in the classical Poisson regression 
model. Secondly, the Bayesian model provides the opportunity of introducing prior 
information into the analysis. 

This flexibility is further enhanced by the use of the Markov Chain Monte Carlo 
(MCMC) based sampling methods. Development in Markov Chain Monte Carlo (MCMC) 
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methods has made it possible to fit various nonlinear regression models. Irrespective of 
these developments, few studies have employed the MCMC based approach to model the 
Poisson regression. As a result, very little is understood about the concept of Bayesian 
analysis and its application to the Poisson regression via MCMC algorithm. 

The aim of the present study is to analyse the Poisson regression model estimated by 
the Bayesian approach in comparison to the classical estimation using roommate conflict 
data. 

This article therefore introduces Bayesian analysis and demonstrates its application to 
parameter estimation of the Poisson regression via Markov Chain Monte Carlo (MCMC) 
algorithm. Fundamentally, this study explores the application of the Bayesian Poisson 
regression and compares it with the classical Poisson regression using roommate conflict 
data. 
 

MATERIALS AND METHODS OF RESEARCH 
 

The present study is interested in comparing the Bayesian Poisson regression and the 
classical Poisson regression models in the estimation of the relationship between the 
frequency of roommate conflict and its determinate. The study therefore uses the roommate 
conflict data used by Acquah (2016). The data was derived from 117 students in the 
University of Cape Coast. The data consist of frequency of conflicts as the dependent 
variable and gender, age, family size, roommates of different religion, prior experience in a 
boarding house, number of roommates one has, years of education, being in a love 
relationship, number of sibling and remittance as the covariate. This data which provides 
information on roommate conflicts among university students allows this study to investigate 
the determinants of roommate conflict using a Bayesian analysis. 

Bayesian Poisson Regression Model. This research considers Bayesian count data 
modelling with a Poisson distribution for analysing frequency of roommate conflicts. Consider 

a random variable ƴ   that follows a Poisson distribution with parameter𝜆. Then its distribution 
is defined as follows: 
 

ƴ   ̴ Poisson (𝜆 )                                                        (1) 

P (y = 𝑦 ∕ 𝜆) =
𝑒−𝜆𝜆𝑦

𝑦!
, 𝑦 = 0,1,2, …                            (2) 

 
Where: the expectation E (𝑦) and variance of 𝑦 are equal to parameter𝜆. 

Furthermore, the likelihood function of Poisson random variable 𝑦 is as follows: 
 

F  𝑦1 , 𝑦2 , … , 𝑦𝑛 𝜆  =  
1

𝑦𝑖 !

𝑛

𝑖=1
𝜆𝑦 !𝑒−𝜆∞𝜆𝛴𝑦𝑖  𝑒

−𝑛𝜆
      (3) 

 

The above equation is in the form of  𝜆𝑐𝑒−𝑑𝜆 , and this is the gamma distribution with 
parameter c and d. We can therefore select gamma distribution as conjugate prior for the 
Poisson parameter. 

Bayesian modelling has increasingly been used in regression analysis. In the Bayesian 
framework, there are three key components associated with parameter estimation: the prior 
distribution, the likelihood function, and the posterior distribution. These three components 
are formally combined by Bayes’ rule as: 
 

Posterior distribution = Prior distribution x likelihood function 

 
Bayesian count data modelling starts with the following expression for the posterior 

distribution: 
 

𝑃 𝜃 𝑦  =
𝑃 𝑦 𝜃  𝑃 𝜃 

𝑃 𝑦 
         (4) 
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Where: 𝜃 is the model parameter, and 𝑦 is the response variable to be predicted. 𝑃 𝜃  and 
𝑃 𝜃 𝑦   are the prior and posterior probabilities of parameter  𝜃 respectively. 𝑃 𝑦 𝜃   
represents the likelihood function of 𝑦 given 𝜃,respectively. Additionally,  𝑃 𝑦  is calculated 
by the following integration: 
 

𝑃 𝑦 = ∫ 𝑃 𝑦 𝜃  𝑃 𝜃 𝑑𝜃        (5) 

 
Using Bayesian modelling, we determined the model parameter of posterior 

distribution. Because we were interest in the mean of the parameters, we had to select a 
prior distribution to begin Bayesian modelling. In general informative priors are used for the 
prior distribution in Bayesian modelling. For the purpose of this study, we assume a 

multivariate Normal prior on  . In order to employ Bayesian computing such as Markov 

Chain Monte Carlo (MCMC) an informative conjugate prior is adopted to alleviate the 
computational burden.  For Bayesian count data modelling, we constructed the Poisson 
regression model with Gamma distribution as prior. The Poisson regression model is defined 
as follows. 

Therefore, we get the Bayesian count data modelling as follows: 
 

 𝑦𝑖  𝑥𝑖    ̴ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖)     (6) 

𝜆𝑖 = exp 𝑥𝑖
′𝛽 + 𝛼𝑖 , 𝛼𝑖   ̴ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)   (7) 

𝑝 𝛽 ∶ 𝐺𝑎𝑚𝑚𝑎 𝑝𝑟𝑖𝑜𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝛽                            (8) 

 
Metropolis Hastings Algorithm. Metropolis-Hasting algorithm is an iterative algorithm 

that generates a Markov chain and permits empirical estimation of posterior distributions. 
The Metropolis Hastings algorithm (MH) produces samples from a probability distribution 
using full joint density function. Drawing from Gill (2002) a basic MH algorithm is made up of 
the following steps: 

1. Establish starting values S for the parameter: 
0j S   . Set 1j  . 

The starting values can be obtained via maximum likelihood estimation. 

2. Draw a ´´candidate`` parameter, 
c from a ´´proposal density,`` (.).  

The simulated value is considered a ´´candidate´´ because it is not automatically 
accepted as a draw from the distribution of interest. It must be evaluated for acceptance. 

3. Compute the ratio 
1

1 1

( ) ( | )

( ) ( | )

c j c

j c j

f
R

f

   

   



 
  

4. Compare R with a (0,1)U random draw u . If R u , then set 
j c  . Otherwise, set 

1j j    

5. Set 1j j  and return to step 2 until enough draws are obtained. 

A detail discussion on the Metropolis Algorithm is presented in Gill (2014). 
 

RESULTS AND DISCUSSION 
 

The model specification with frequency of conflicts as the dependent variable and 
gender, age, family size, roommates of different religion, prior experience in a boarding 
house, number of roommates one has, years of education, being in a love relationship, 
number of sibling and remittance as the covariates was estimated for both the Bayesian and 
classical Poisson regression. The classical Poisson regression and the Bayesian Poisson 
regression results suggest that prior experience in a boarding house and number of Sibling is 
associated with increases in roommate conflicts whilst family size, number of roommates one 
has and being in a love relationship are associated with a reduction in roommate conflict. 

The posterior moments in the Bayesian Poisson estimation was obtained after a burn 
in period of 50,000 iterations and a follow up period of 250,000, storing every 20th iteration. 
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Using the posterior mean as a point estimate, Table 1 compares the classical Poisson 
estimates with the MCMC output. 
 

Table 1 – Classical Poisson and Posterior Moments 
 

 Classical Poisson Posterior 

Variable Mean Std. Error Mean Std. Error 

Intercept -1.5394 1.0387 -1.5667 1.0480 
GEN 0.1672 0.1706 0.1594 0.1724 
AGE 0.0271 0.0287 0.0253 0.0284 

FSIZE -0.2633 ** 0.0994 -0.2618 0.0990 
DIFR 0.0385 0.1763 0.0336 0.1766 
BOD 0.5919 ** 0.2036 0.6117 0.2040 
NRM -0.1199 * 0.0481 -0.1229 0.0488 
EDU 0.1079 0.0685 0.1104 0.0691 
LOR -0.3813 * 0.1482 -0.3859 0.1491 
NOS 0.3335 *** 0.0970 0.3323 0.0968 
REM 0.0002 0.0003 0.0002 0.0002 

 

Significance codes:  0  ‘***’  0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1  ‘ ’ 1. 
NOTE: GEN= gender, AGE= age, FSIZE= family size, DIFR= Roommates of different religion, BOD= Prior 
experience in a boarding house, NRM= Number of roommates one has, EDU= years of education, LOR= Being in 
a love relationship, NOS= Number of Sibling and REM= Remittance. 

 
It should be emphasized that a negative sign of a parameter indicates that high values 

of the variables tends to decrease the frequency of conflict. A positive sign implies that high 
values of the variables will increase the frequency of conflict. In effect the frequency of 
roommate conflict decreases with Family size, Number of roommates one has and Being in a 
love relationship. 

The estimated means and standard errors appear quite close with minimum difference 
between the classical Poisson estimate and MCMC output or posterior summary. Noticeably, 
the results show a reduction of standard errors associated with the coefficients of age, family 
size and number of sibling obtained from the Bayesian analysis, thus bringing greater 
stability to theses coefficients. It’s interesting that the results agree so closely, considering 
fundamentally how different these estimation procedures are. 
 

Table 2 – Posterior Distribution Summaries of parameters from MCMC Poisson regression 
 

Variables 
Posterior Standard Quantiles of Posterior Distributions 
Means Error 2.5% 25% 75% 97.5% 

Intercept -1.5667 1.0480 -3.6551 -2.257e+00 -0.8746 0.4983 
GEN 0.1594 0.1724 -0.1795 4.086e-02 0.2755 0.5011 
AGE 0.0253 0.0284 -0.0306 6.571e-03 0.0443 0.0809 

FSIZE -0.2618 0.0990 -0.4491 -3.303e-01 -0.1941 -0.0666 
DIFR 0.0336 0.1766 -0.3239 -8.368e-02 0.1522 0.3761 
BOD 0.6117 0.2040 0.2255 4.688e-01 0.7471 1.029 
NRM -0.1229 0.0488 -0.2205 -1.556e-01 -0.0887 -0.0303 
EDU 0.1104 0.0691 -0.0280 6.426e-02 0.1571 0.2428 
LOR -0.3859 0.1491 -0.6785 -4.840e-01 -0.284 -0.0976 
NOS 0.3323 0.0968 0.1413 2.671e-01 0.3989 0.5206 
REM 0.0002 0.0002 -0.0003 5.178e-05 0.0004 0.0007 

 

NOTE: GEN= gender, AGE= age, FSIZE= family size, DIFR= Roommates of different religion, BOD= Prior 
experience in a boarding house, NRM= Number of roommates one has, EDU= years of education, LOR= Being in 
a love relationship, NOS= Number of Sibling and REM= Remittance. 

 
Bayesian Poisson regression results reveals a positive relationship between frequency 

of roommate conflicts and the regression covariates (prior experience in a boarding house 
and number of Sibling) whilst a negative relationship is revealed between frequency of 
roommate conflicts and the regression covariates (family size, number of roommates one 
has and being in a love relationship). 
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Elements such as the quantiles of the parameter posterior distributions and the 
posterior probability of positive or negative values for each input parameter are of primary 
interest. 

The estimated posterior mean of the effect of prior experience in a boarding house is 
0.611 with (0.22, 1.03) at a 95% credible interval. However, the parameter for prior 
experience in a boarding house is a distribution and further conclusions can be derived. For 
example, there is a small chance (2.5%) to have an estimate of the very low value of 0.22 or 
the high value of 1.03 but is more likely that the estimate is 0.468 to 0.747. These 
observations lead to the conclusion that the prior experience in a boarding house has a 
positive effect on the frequency of roommate conflicts. This observation agrees with the 
results of the Poisson regression analysis, where we found that prior experience in a 
boarding house has a positive and significant effect on the frequency of roommate conflicts. 

The posterior distributions of the number of Sibling and its corresponding quantiles 
given in Table 2 indicates that this parameter is mostly around 0.33 with a 2.5% probability 
taking a low value  of 0.1413 or a high value of 0.5206. Graphically, most of the mass of the 
posterior distributions of number of Sibling variables are in the positive as illustrated in the 
plots of their posterior distributions in appendix I. These observations lead to the conclusion 
that number of Sibling has a positive effect on the frequency of roommate conflicts. This 
observation agrees with the results of the Poisson regression analysis, where we found that 
the number of Sibling has a positive and significant effect on the frequency of roommate 
conflicts. 

The estimated posterior mean of the effect of family size is 0.261 with (-0.44, -0.06) at 
a 95% credible interval. However, the parameter for family size is a distribution and further 
conclusions can be derived. For example, there is a small chance (2.5%) to have an estimate 
of the very low value of - 0.44 or the high value of -0.06 but is more likely that the estimate is 
between -0.33 to -0.19. These observations lead to the conclusion that the family size has a 
negative effect on the frequency of roommate conflicts. This observation agrees with the 
results of the Poisson regression analysis, where we found that the family size has a 
negative and significant effect on the frequency of roommate conflicts. 

The posterior distributions of the number of roommates one has and its corresponding 
quantiles given in Table 2 indicates that this parameter is mostly around -0.123 with a 2.5% 
probability taking a low value of -0.221 or a high value of -0.03.  Graphically, most of the 
mass of the posterior distributions of number of roommates one has variables are in the 
negative as illustrated in the plots of their posterior distributions in appendix I. These 
observations lead to the conclusion that the number of roommates one has a negative effect 
on the frequency of roommate conflicts. This observation agrees with the results of the 
Poisson regression analysis, where we found that one’s number of roommates has a 
negative and significant effect on the frequency of roommate conflicts. 

The posterior distributions of  being in a love relationship and its corresponding 
quantiles given in Table 1 indicates that the parameters is mostly around -0.386 with a 2.5% 
probability taking a low value of  – 0.679 and a high value of -0.098. Graphically, the mass of 
the posterior distributions of being in a love relationship variable are distributed in the 
negative as illustrated in the plots of its posterior distributions in appendix I. These 
observations lead to the conclusion that being in a love relationship has a negative effect on 
the frequency of roommate conflicts. This observation agrees with the results of the Poisson 
regression analysis, where we found that being in a love relationship has a negative and 
significant effect on the frequency of roommate conflicts. 
 

CONCLUSION 
 

The classical estimation of the Poisson regression model has some important 
limitations which can be resolved with possible alternative methods. The goal of this study 
was therefore to introduce Bayesian analysis as an alternative approach and demonstrate its 
application to parameter estimation of the Poisson regression model in a comparative 
analysis with the Classical Poisson regression estimation. This study finds that the Bayesian 
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Markov Chain Monte Carlo algorithm offers an alternative framework for estimating the 
Poisson regression model. 

Both the classical Poisson regression and the Bayesian Poisson regression results 
suggest a positive relationship between frequency of roommate conflicts and the regression 
covariates (prior experience in a boarding house and number of Sibling) whilst a negative 
relationship is revealed between frequency of roommate conflicts and the regression 
covariates (family size, number of roommates one has and being in a love relationship). 
Furthermore, a comparison of the classical and Bayesian approach to modelling the Poisson 
regression reveals lower standard errors of some estimated coefficients in the Bayesian 
approach for the Poisson regression model. Thus the Bayesian Poisson regression is more 
stable. Notably, the alternative methods lead to similar conclusions. Fundamentally, this 
study has demonstrated the application of the Bayesian MCMC algorithm to Poisson 
regression estimation within the context of roommate conflict data. 
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