Научная статья на тему 'ALUMINUM NANOSTRUCTURES PRODUCED BY AEROSOL DRY PRINTING FOR ULTRAVIOLET PHOTOLUMINESCENCE ENHANCEMENT'

ALUMINUM NANOSTRUCTURES PRODUCED BY AEROSOL DRY PRINTING FOR ULTRAVIOLET PHOTOLUMINESCENCE ENHANCEMENT Текст научной статьи по специальности «Нанотехнологии»

CC BY
100
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
METAL ENHANCED LUMINESCENCE / ULTRAVIOLET REGION (UV) / ALUMINUM NANOSTRUCTURES / ALUMINUM NANOPARTICLES / ZINC OXIDE NANOPARTICLES / FILMS / SPARK DISCHARGE METHOD / DRY AEROSOL PRINTING

Аннотация научной статьи по нанотехнологиям, автор научной работы — Malo D., Lizunova A.A., Nouraldeen M., Borisov V.I., Ivanov V.V.

Aluminum nanoparticles and nanostructures characterized by plasmon resonance in the ultraviolet (UV) range became a subject of intense research. Fluorescence is considered an important phenomenon in catalysis, UV photonics and in clinical medicine, for example, in cell imaging, medical diagnostics and biophysical studies. This work demonstrates metal-enhanced luminescence in the UV region of zinc oxide nanoparticles deposited on films of aluminum nanoparticles formed by dry aerosol printing on quartz substrates. Two different conditions of metal aluminum nanoparticles (Al NPs) production in spark discharge method were used to obtain aluminum nanoparticles with an average size 9.5± 5.6 and 15.5 ± 8.9 nm. At an excitation wavelength of 325 nm, the photoluminescent enhancement factor at 377 nm was about 1.3 for zinc oxide nanoparticles (ZnO NPs) with mean size 26.6 ± 7.4 nm. This study is a perspective step to confirm the benefits and focus attention on the plasmonic properties of Al nanostructures in UV range.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ALUMINUM NANOSTRUCTURES PRODUCED BY AEROSOL DRY PRINTING FOR ULTRAVIOLET PHOTOLUMINESCENCE ENHANCEMENT»

i l St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.3 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.3) 2022

Conference materials UDC 544.7

DOI: https://doi.org/10.18721/JPM.153.354

Aluminum nanostructures produced by aerosol dry printing for ultraviolet photoluminescence enhancement

D. Malo 1 2H, A. A. Lizunova \ M. Nouraldeen 1 3, V. I. Borisov V. V. Ivanov 1 1 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia;

2 Damascus University, Damascus, Syria;

3 Tartous University, Tartous, Syria H malo.dana@mail.ru

Abstract. Aluminum nanoparticles and nanostructures characterized by plasmon resonance in the ultraviolet (UV) range became a subject of intense research. Fluorescence is considered an important phenomenon in catalysis, UV photonics and in clinical medicine, for example, in cell imaging, medical diagnostics and biophysical studies. This work demonstrates metal-enhanced luminescence in the UV region of zinc oxide nanoparticles deposited on films of aluminum nanoparticles formed by dry aerosol printing on quartz substrates. Two different conditions of metal aluminum nanoparticles (Al NPs) production in spark discharge method were used to obtain aluminum nanoparticles with an average size 9.5 ± 5.6 and 15.5 ± 8.9 nm. At an excitation wavelength of 325 nm, the photoluminescent enhancement factor at 377 nm was about 1.3 for zinc oxide nanoparticles (ZnO NPs) with mean size 26.6 ± 7.4 nm. This study is a perspective step to confirm the benefits and focus attention on the plasmonic properties of Al nanostructures in UV range.

Keywords: metal enhanced luminescence, ultraviolet region (UV), aluminum nanostructures, aluminum nanoparticles, zinc oxide nanoparticles, films, spark discharge method, dry aerosol printing

Funding: This work was financially supported by Russian Science Foundation (project No. 22-19-00311, https://rscf.ru/en/project/22-19-00311/).

Citation: Malo D., Lizunova A. A., Nouraldeen M., Borisov V. I., Ivanov V. V., Aluminum nanostructures produced by aerosol dry printing for ultraviolet photoluminescence enhancement. St. Petersburg State Polytechnical University Journal. Physics and Mathematics, 15 (3.3) (2022) 276-280. DOI: https://doi.org/10.18721/JPM.153.354

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 544.7

DOI: https://doi.org/10.18721/JPM.153.354

Наноструктуры алюминия полученные методом сухой аэрозольной печати для усиления ультрафиолетовой фотолюминесценции

Д. Мало 1 2Н, А. А. Лизунова 1, М. Нуралдин 1 3, В. И. Борисов 1, В.В. Иванов 1

1 Московский физико-технический институт, Долгопрудный, Московская область, Россия;

2 Дамасский университет, Дамаск, Сирия;

3 Тартусский университет, Тартус, Сирия

н malo.dana@mail.ru

Аннотация. Эта работа демонстрирует усиленную люминесценции в ультрафиолетовой (УФ) области наночастиц оксида цинка, нанесенных на пленки из наночастиц алюминия, сформированных методом сухой аэрозольной печати. Металлические наночастицы алюминия со средними размерами 9.5 ± 5.6 и 15.5 ± 8.9 нм были получены

© Malo D., Lizunova A. A., Nouraldeen M., Borisov V. I., Ivanov V. V., 2022. Published by Peter the Great St.Petersburg Polytechnic University.

в газовом разряде при двух различных условиях синтеза. Коэффициент усиления фотолюминесценции частиц оксида цинка со средним размером 26.6 ± 7.4 нм на длине волны 377 нм (при возбуждении на 325 нм) в присутствии частиц алюминия составлял около 1.3.

Ключевые слова: усиление люминесценции, ультрафиолетовая область (УФ), нанострукторы алюминия, наночастицы алюминия, наночастицы оксида цинка, пленки, метод газового разряда, сухая аэрозольная печать

Финансирование: Исследование выполнено за счет гранта Российского научного фонда (проект № 22-19-00311, https://rscf.ru/en/project/22-19-00311/).

Ссылка при цитировании: Мало Д., Лизунова А. А., Нуралдин М., Борисов В. И., Иванов В. В., Наноструктуры алюминия полученные методом сухой аэрозольной печати для усиления ультрафиолетовой фотолюминесценции // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.3. C. 276—280. DOI: https://doi.org/10.18721/JPM.153.354

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https:// creativecommons.org/licenses/by-nc/4.0/)

Introduction

The photoluminescence enhancement is considered one of the most intense research fields at the present time, especially in ultraviolet region [1—3]. Aluminum is attractive metal for commercial applications owing to low-cost, high plentiful, high stability due to the presence of the shell natural oxide, and easy inclusion into fabrication processes [4, 5]. Additionally, aluminum nanoparticles have plasmon resonance in the UV region [6, 7] that make this metal as a promising material for creating plasmonic structures with enhancing luminescence in the UV region of the spectrum for many applications in medicine and technologies as solar cells [8], ultraviolet light-emitting diodes [9,10], and chemical and biological sensors [5, 11, 12].

Several chemical and physical methods are used to synthesize aluminum nanoparticles [13]. One of them is spark discharge synthesis [6, 14] which allows to produce spherical nanoparticles with varies morphology and optical parameters as well as it can be used for the film fabrication.

There are a lot of expensive methods for the nanostructures' and film fabrication, for example: molecular beam epitaxy [15] and electron beam lithography [16]. However, several simple, cheap and easily scalable methods exist for the films' production based on metal nanoparticles and semiconductor phosphors. Dry aerosol printing is known to be a promising method to deposit chemically pure nanoparticles (NPs), produced by spark discharge, on substrate in real time for manufacturing planar microstructures and films [17].

At present, zinc oxide nanoparticles are used as the most widespread semiconductor material for verification the phenomena of metal-enhance luminescence in ultraviolet range near plasmonic nanostructures based on noble metal [18], and aluminium [19, 20].

Therefore, the purpose of our research is to investigate the metal-enhanced luminescence of ultraviolet phosphor, namely zinc oxide nanoparticles, in the presence of aluminum nanoparticles produced in our laboratory by spark discharge and deposited on quartz substrate by dry aerosol printing. It is shown that metal-enhanced luminescence of ZnO NPs was achieved using two samples of Al NPs with different average sizes at an excitation wavelength of 325 nm.

Materials and Methods

Suspension of zinc oxide was prepared from a dispersion of ZnO Sigma Aldrich (40 wt. %) by 10-times dilution using chromatographically pure isopropyl alcohol (Macron), ultrasonic treatment for 5 minutes and centrifugation (Sigma 3—30K) for 5 minutes at 25 000 rpm. The obtained suspension of ZnO NPs was diluted with chromatographically pure isopropyl alcohol to obtain suspension with concentration 2.2 g/l. To obtain Al NPs, the spark discharge generator [6] was used in atmosphere of argon of purity 6.0 with aluminum electrodes, capacitor 40 nF, discharge voltage 1.5 kV, pulse repetition rate 0.5 kHz and gas flow 1 L/min, for AlI sample, 7 degrees of bevel of the electrodes were used, while for AlII sample additional in-flow thermal treatment (600 °C) of NPs in tube furnace was applied.

© Мало Д., Лизунова А. А., Нуралдин М., Борисов В. И., Иванов В. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

To form thin films, A1 NPs were deposited (4^4 mm2) on a quartz substrate (2^2 cm2) by dry aerosol printing [17]. Focusing nozzle with an outlet diameter of 300 nm, the internal channel of the nozzle is characterized by a smooth wall and a gradual decrease in the diameter of the channel. At the end of the nozzle there is a hole with a diameter Dnn, (Al NPs were depositing through a coaxial nozzle with an outlet hole of 300 ^m located at 1 mm from the substrate surface. For studying the luminescence enhancement, the ZnO NPs (2.2 g/l) were disposed on the surface of Al NPs film.

The size and crystal structure of primary nanoparticles were received by transmission electron microscope (TEM) Jeol JEM 2100 (200 kV). The UV-vis-NIR spectra and luminescence emission of films were obtained using JASCO V—770 and JASCO FP—8300 spectrometers, correspondingly.

Fig. 1. Scheme of Al NPs synthesis by spark discharge generator with printing on quartz substrate (a); photograph of a spark between parallel (the upper photo) Al electrodes and with bevel (the bottom photo) electrodes (b); the dry aerosol printing of Al film (c)

Results and Discussion

TEM and electron diffraction images presented in Fig. 2 show that the Al nanoparticles have spherical shape and metal crystal structure, the average primary particle size of NPs synthesized with 7 degrees of bevel of the electrodes (AlI) was 9.5 ± 5.6 nm while 15.5 ± 8.9 nm for particles synthesized with additional sintering at 600 °C (AlII). ZnO NPs were with mean size 26.6 ± 7.4 nm.

Fig. 2. Typical TEM images with corresponding SAED patterns (on the insert) for AlI (a); AlII (b); ZnO (c) and their histograms of the particle size distribution, approximated by a lognormal function

The measurements of the Al NPs films absorption spectra showed a uniformly decreasing function of wavelength and the presence of weak absorption peak in the UV region with peak position approximately at 245 nm for Al samples and for ZnO film approximately at 360 nm (Fig. 3, a). As shown in Fig. 3, b luminescence enhancement was achieved on quartz substrate

using two of Al NPs samples where ZnO layer was deposited above the Al layer (ZnO/Al) and the peak position was at 377 nm at an excitation wavelength of 325 nm. The photoluminescent enhancement factor was about 1.3 for (ZnO/Al) films when compared to bare ZnO film.

a) I b)

200 250 ICO 350 400 450 500

Wavelength, rim

S

g 750 ?

S ™

-ZnO 2.2 gfl - - ZnO/Alr ......zno / aid

377 nm I

^ " v

/ / V / t ___ N •' t s \ \

......./ / / / \ / / \ / / V N

ZnO 22 gfl

A^veteogth. n

Fig. 3. Absorption spectra of films: ZnO 2.2 g/l, A^ and Aln (a); Photoluminescence emission spectra of films: ZnO 2.2 g/l, ZnO layer on AlI layer and ZnO on AlII at an excitation wavelength 325 nm (b)

The results mentioned above are considered acceptable for micro-nanostructure of ZnO nanoparticles in the presence ofAl NPs. For example, in [21] the peak position ofphotoluminescence emission spectrum was at 375 nm with enhancement ratio 2.5 whereas another group achieved the enhancement ratio 170 at 389 nm [20]. Moreover, on array of oval Al NPs, the photoluminescence of ZnO nanocrystal increased 9.7 times at about 380 nm [19].

Conclusion

The spark discharge method is considered to be a simple and promising method for synthesis of metal Al NPs with plasmon resonance in the UV region. In this research, we presented experimental studies showing the effect of aluminum nanoparticles on the emission of fluorophores in the UV region of the spectrum. Metal-enhanced luminescence of ZnO NPs with mean size (26.6 ± 7.4 nm) was achieved using two samples of Al NPs with different average sizes (9.5 ± 5.6 and 15.5 ± 8.9 nm) at an excitation wavelength of 325 nm. Absorption peak position was detected at 245 nm for Al films, while for ZnO it was approximately at 360 nm.

At an excitation wavelength of 325 nm, the photoluminescence intensity of ZnO NPs in the UV region at wavelength 377 nm increased by 30 % in the presence of Al film based on metal NPs synthesized by spark discharge method and deposited on quartz substrate by dry aerosol printing when compared to bare ZnO film was shown. These promising results presented aluminum nanostructures as functional substrates for metal-enhanced luminescence applications in imaging, biosensing, catalysis and UV photonics.

REFERENCES

1. Guzatov D. V., Gaponenko S. V., Demir H. V., Plasmonic enhancement of electroluminescence, AIP Advances. 8 (1) (2018) 015324.

2. Yu H., Peng Y., Yang Y., Li Z.-Y., Plasmon-enhanced light—matter interactions and applications, npj Computational Materials. 5 (1) (2019) 1-14.

3. Gaponenko S. V., Demir H. V., Applied nanophotonics, Cambridge University Press:. (2018).

4. Knight M. W., King N. S., Liu L., Everitt H. O., Nordlander P., Halas N. J., Aluminum for plasmonics, ACS nano. 8 (1) (2014) 834-840.

5. Gérard D., Gray S. K., Aluminium plasmonics, Journal of Physics D: Applied Physics. 48 (18) (2014) 184001.

6. Borisov V. I., Lizunova, A. A., Mazharenko A. K., Malo, D., Ramanenka A. A., Shuklov I. A.,

Ivanov V. V., Aluminum nanoparticles synthesis in spark discharge for ultraviolet plasmonics, Journal of Physics: Conference Series, IOP Publishing. 1695 (2020) 012021.

7. Martin J., Khlopin D., Zhang F., Schuermans S., Proust J., Maurer T., Gérard D., Plain J., Aluminum nanostructures for ultraviolet plasmonics, UV and Higher Energy Photonics: From Materials to Applications 2017, International Society for Optics and Photonics.10351(2017) 103510D.

8. Zhang Y., Cai B., Jia B., Ultraviolet plasmonic aluminium nanoparticles for highly efficient light incoupling on silicon solar cells, Nanomaterials. 6 (6) (2016) 95.

9. Honda, M., Kumamoto Y., Taguchi A., Saito Y., Kawata S., Plasmon-enhanced UV photocatalysis, Applied Physics Letters.104 (6) (2014) 061108.

10. Huang K., Gao N., Wang C., Chen X., Li J., Li S., Yang X., Kang J., Top-and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localised surface plasmons, Scientific reports. 4 (1) (2014) 1—7.

11. Li W., Ren K., Zhou J., Aluminum-based localized surface plasmon resonance for biosensing, TrAC Trends in Analytical Chemistry. 80 (2016) 486-494.

12. Akbay N., Lakowicz J. R., Ray K., Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles, The Journal of Physical Chemistry C. 116 (19) (2012) 10766-10773.

13. Ghorbani H. R., A review of methods for synthesis of Al nanoparticles, Orient journal of chemistry. 30 (4) (2014) 1941-1949.

14. Meuller B. O., Messing M. E., Engberg D. L., Jansson A. M., Johansson L. I., Norlfin, S. M., Tureson N., Deppert K., Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Science and Technology. 46 (11) (2012) 1256-1270.

15. Aggarwal V., Ramesh C., Tyagi P., Gautam S., Sharma A., Husale S., Kumar M. S., Kushvaha S., Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications. Materials Science in Semiconductor Processing. 125 (2021) 105631.

16. Yue W., Wang Z., Yang Y., Chen L., Syed A., Wong K., Wang X., Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering, Journal of Micromechanics and Microengineering. 22 (12) (2012) 125007.

17. Khabarov K. M., Nouraldeen M., Lizunova A. A., Urazov M. N., Ivanov V. V., Formation of planar plasmon microstructures by dry aerosol printing, Journal of Physics: Conference Series, IOP Publishing. 2086 (2021) 012147.

18. Guidelli E. J., Baffa O., Clarke D. R., Enhanced UV emission from silver/ZnO and gold/ ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence, Scientific reports. 5 (1) (2015) 1-11.

19. Muravitskaya A., Gokarna A., Movsesyan A., Kostcheev S., Rumyantseva A., Couteau C., Lerondel G., Baudrion A.-L., Gaponenko S., Adam P.-M., Refractive index mediated plasmon hybridization in an array of aluminium nanoparticles, Nanoscale. 12 (11) (2020) 6394-6402.

20. Lu J., Li J., Xu C., Li Y., Dai J., Wang Y., Lin Y., Wang S., Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Applied Materials & Interfaces. 6 (20) (2014) 18301-18305.

21. Wu K., Lu Y., He H., Huang J., Zhao B., Ye Z., Enhanced near band edge emission of ZnO via surface plasmon resonance of aluminum nanoparticles, Journal of Applied Physics.110 (2) (2011) 023510.

THE AUTHORS

MALO Dana

malo.dana@mail.ru ORCID: 0000-0001-6310-9183

borisov.vi@phystech.edu ORCID: 0000-0001-7186-5050

BORISOV Vladislav I.

LIZUNOVA Anna A.

lizunova.aa@mipt.ru ORCID: 0000-0002-2895-4696

IVANOV Victor V.

ivanov.vv@mipt.ru ORCID: 0000-0002-9149-0468

NOURALDEEN Messan

messannouraldeen@phystech.edu

ORCID: 0000-0001-5437-0021

Received 14.07.2022. Approved after reviewing 14.07.2022. Accepted 15.07.2022. © Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.