Научная статья на тему 'Алгоритмическое обеспечение системы экологического мониторинга'

Алгоритмическое обеспечение системы экологического мониторинга Текст научной статьи по специальности «Математика»

CC BY
137
39
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
СИСТЕМА ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА / АЛГОРИТМ СБОРА / ГИМС-ПРИЛОЖЕНИЕ

Аннотация научной статьи по математике, автор научной работы — Прокопенко М. Н., Паращук Е. М.

Разработка системы экологического мониторинга представляется невозможной без создания специализированных алгоритмов сбора, хранения и обработки данных. Именно такие алгоритмы, проверенные на практике, предложены авторами в настоящей работе.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Прокопенко М. Н., Паращук Е. М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Алгоритмическое обеспечение системы экологического мониторинга»

УДК 519.688, 004.942

АЛГОРИТМИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА

М. Н. ПРОКОПЕНКО11 Е. М. ПАРАЩУК21

''Белгородский филиал НАЧОУ ВПО «Современная гуманитарная академия»

e-mail: tk-apit@yandex.ru

21Белгородский государственный технологический университет им. В.Г. Шухова

Разработка системы экологического мониторинга представляется невозможной без создания специализированных алгоритмов сбора, хранения и обработки данных. Именно такие алгоритмы, проверенные на практике, предложены авторами в настоящей работе.

Ключевые слова: система экологического мониторинга, алгоритм сбора, ГИМС-приложение.

Задача организации стабильного и эффективного функционирования системы экологического мониторинга является многокомпонентной. Ее решение невозможно без применения специально разработанных алгоритмов, позволяющих автоматизировать процессы сбора, накопления, хранения, обработки, актуализации, передачи, вывода информации как о текущем, так и о прогнозном состоянии загрязнения приземного слоя атмосферы выбросами от автотранспорта в условиях города. Система экологического мониторинга должна обеспечивать качественную и количественную оценку состояния загрязнения воздушного бассейна города, а также выполнять прогностические расчеты, позволяющие предугадать изменение экологической нагрузки на отдельные районы города ввиду применения различных административных и архитектурно-планировочных решений, направленных на снижение уровня загрязнения атмосферы в зоне жизнедеятельности человека. Для этих целей система экологического мониторинга включает в себя стационарные и мобильные контрольно-измерительные посты мониторинга и центральный контрольный пункт, использующие аппаратуру городской телефонной сети, а также средства радиосвязи (рис. 1).

Рис. '. Структурная схема системы экологического мониторинга

Серия История. Политология. Экономика. Информатика. 2010. № 13 (84). Выпуск 15/1

Одной из основных особенностей системы экологического мониторинга является необходимость визуализации экспериментально-полученных, расчетных и прогностических данных о концентрациях загрязняющих веществ (ЗВ) на цифровой карте города, т.е. обязательное применение на центральном контрольном пункте наряду с проблемно-ориентированным программным обеспечением геоинформационной системы.

Разработка ГИМС - геоинформационных мониторинговых систем - является

<_* О О <_* -р.

исключительно сложной, комплексной и многоплановой задачей. В настоящее время широкое распространение получила концепция программирования «сверху - вниз» [1]. Следуя данной концепции, представим на уровне алгоблоков схему функционирования программного комплекса по мониторингу окружающей среды (рис. 2).

Пуск

I-^^

нет

^^^^^Перы&пние гроцебуры мониторинга. 7*

Рис. 2. Обобщенная схема функционирования программного комплекса

Основным элементом данного комплекса является ГИМС-приложение, представляющее собой совокупность отдельных модулей, интегрированных в единую программную оболочку. Охарактеризуем наиболее значимые модули.

Модуль 1. Реализует главную форму приложения, на которой расположены панели управления режимами работы разрабатываемого приложения, главное меню программы с набором управляющих пунктов меню, компонент TMapView, предназначенный для доступа к картографической информации электронной карты и управления ее отображением и печатью.

Модуль 2. Реализует диалоговое окно отображения списка пользовательских карт, открытых совместно с основной электронной картой. Совместно с одной картой местности может одновременно отображаться любое количество различных пользовательских карт, какая именно из них будет участвовать в сеансе мониторинга определяется пользователем.

Модуль 3. Модуль данных, предназначенный для размещения компонентов доступа к данным БД (ТТаЫе), содержащий информацию о связанных с ними компонентами представления данных (TDataSourse). Реализован обособленно с целью повышения читаемости и его управляемости.

Модуль 4. Подпрограммы данного модуля осуществляют первичное нанесение информации, полученной в результате расчетов значений концентрации ЗВ, на выбранную ранее оператором пользовательскую векторную карту. Кроме того, средствами данного модуля реализована функция расчета и визуализации не только мгновенных (почасовых), но и среднесуточных полей концентраций ЗВ.

Модуль 5. Содержит инструментарий для индикации выполнения следующих процессов: а) нанесения на пользовательскую карту сети реперных отметок; б) пересчета значений концентраций ЗВ в узлах сети при выполнении процедуры периодического мониторинга.

Модуль 6. Реализует процедуру создания пользовательской векторной карты.

Модуль 7. Содержит инструментарий для осуществления мониторинга значений концентраций ЗВ с периодичностью, задаваемой пользователем. Подпрограммы данного модуля осуществляют перерасчет значений концентраций ЗВ в узлах сети реперных отметок с учетом новых значений параметров расчета (метеоусловий, мощностей выбросов загрязняющих веществ и т.д.).

Модуль 8. Выводит на монитор информацию о количестве расположенных на пользовательской карте реперных точек, нанесенных на нее в ходе выполнения процедуры создания сети реперных отметок, количестве точек, обработанных в ходе текущего сеанса мониторинга, количестве переписанных объектов и т.д.

Модуль 9. Реализует аналитические зависимости (в виде формализованной математической модели), связывающие значения входных параметров расчета (метеоусловий, мощностей выбросов загрязняющих веществ и т.д.) и значения концентраций ЗВ в узлах сети реперных отметок с координатами (х, у).

Поскольку визуализация уровня загрязнения приземного слоя атмосферы проводится на векторной карте, то носителем информации о значении концентрации ЗВ в какой-либо точке рассматриваемого участка может быть семантическая характеристика некоторого точечного объекта, который не имеет реального представления на местности. В ходе разработки было предложено нанести на карту района «сетку» с ячейками заданного размера, в узлах которой расположены реперные точки, несущие помимо метрической информации - координат положения на карте - еще числовую семантическую характеристику, представляющую собой рассчитанные по математической модели значения концентраций вредных примесей в атмосферном воздухе [2]. Таким образом, совокупность всех семантических характеристик реперных отметок представляет собой поле значений концентраций ЗВ. На рис. 3 представлена блок-схема алгоритма расчета и нанесения информации о разовых (почасовых) значениях концентрации ЗВ на электронную карту города.

Однако достаточно часто необходимо иметь возможность анализировать усредненные данные, например, для установления общего фона загрязнения атмосферы выбранного участка города, для чего разработан алгоритм расчета и нанесения информации о среднесуточных полях приземной концентрации ЗВ на электронную карту города, блок-схема которого приведена на рис. 4. Данные значений концентрации ЗВ получаются путем расчета и последующего суммирования всех почасовых значений концентраций выбросов от автотранспорта.

Серия История. Политология. Экономика. Информатика. 2010. № 13 (84). Выпуск 15/1

Рис. 3. Блок-схема алгоритма расчета и нанесения информации о разовых (почасовых) значениях концентрации ЗВ на электронную карту города

Для подтверждения корректности выполнения предложенных алгоритмов рассмотрен участок одной из основных автомагистралей города Белгорода (пр-т Б. Хмельницкого) длиной в 1000 м - перегон между перекрестками с ул. Студенческой и ул. Мичурина - как линейный источник загрязнений и примыкающий к нему перекресток проспекта Б. Хмельницкого и улицы Мичурина как точечный источник. Мощности выбросов от автотранспорта замерялись опытным путем согласно принятой методике [3]. Именно эти данные были использованы в разработанном ГИМС-приложении в качестве исходных для расчета мгновенных значений концентрации ЗВ. Результаты моделирования представляются как на плоскости, так и в пространстве (рис. 5), причем созданный специально растр качеств позволяет визуально определить степень загрязнения приземного слоя атмосферы в рассматриваемом районе города. Отображение полученного растра совместно с цифровой картой изучаемого района города позволяет выделить зоны особой опасности для населения, интенсивность автомобильного движения вблизи которых требует существенного снижения.

С > + _

Определение параметроб расчета

мат. модели, не вошедших В таблицу исходных статистических данных.

Выборка данных из • —й запис таблицы исходных статистичес даннных расчета значений 1райии ЗВ

Расчс ЗВ В 1 гт значении [пекущей рег к он цент рации Iернои отметке

[ _ 1 ___ нет

да

СозЭан 1. ¡тики) объек ■> (без метрики и ста — реперной

Занесен ние метриче! В созданньн скои информации и объект

Нанесение полученной Б х о с расчетов информации о среднесуточном значении концентрации ЗВ на электрон сорту города В Виде семантиче характеристики реперной то*

значении В рамках дин

Определение метрики следун реперной отметки

I

Рис. 4. Блок-схема алгоритма расчета и нанесения информации о среднесуточных значениях концентрации ЗВ на электронную карту города

Рис. 5. Отображение растра качеств совместно с трехмерной моделью местности

Таким образом, обобщенный алгоритм функционирования программного комплекса системы экологического мониторинга представляет собой совокупность трех элементов: базы данных, ГИМС-приложения и геоинформационной системы (рис. 6).

Рис. 6. Алгоритм функционирования программного комплекса

Проведенные исследования показали, что разрабатываемая система экологического мониторинга является весьма сложной, трудоемкой, времязатратной в реализации, но, безусловно, актуальной и обладает огромным общественно-социальным значением. Некоторые из приведенных алгоритмов требуют доработки и уточнения, тем не менее, все они в совокупности позволяют достаточно точно определить уровень загрязнения приземного слоя атмосферы города.

Литература

1. Дональд Э. Кнут. Искусство программирования. - М.: Вильямс, 2008. - Т. 1. Основные алгоритмы. - 720 с.

2. Паращук Е.М., Коваль В.Н., Прокопенко М.Н. Результаты моделирования распространения выбросов автотранспорта на ограниченной территории города // Экологические системы и приборы. - 2007. - №3. - С. 56-59.

3. Методика расчетов выбросов в атмосферу загрязняющих веществ автотранспортом на городских магистралях. - М.: Министерство транспорта РФ, 1996. - 54 с.

ALGORITHMIC SUPPORT OF ECOLOLOGICAL MONITORING SYSTEM

M. N. PROKOPENKO" E. N. PARASCHUK21

'Belgorod branch NACHOU VPO Modern humanitarian academy

e-mail: tk-apit@yandex.ru

2)Belgorod State Technological University them. V.G. Shukhov

Annotation: The design of ecolological monitoring seems impossible without the creation of special algorithms of data collection, storage and processing. Precisely such algorithms checked in practice are offered by the authors in this article.

Key words: ecolological monitoring system, Algorithmic support, GIS-application.

i Надоели баннеры? Вы всегда можете отключить рекламу.