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1. Introduction 
In this paper we begin the study of computational 

complexity of the principal algorithmic problems in fi-
nitely generated metabelian groups. Our approach here 
is two-fold: firstly, we rewrite and streamline some clas-
sical algorithms in metabelian groups to fit them into 
the framework of Groebner bases and commutative al-
gebra (sometimes this requires a significant rebuild); 
secondly, we show that in most cases this reduction to 
the Groebner bases is in polynomial time. The main goal 
for the subsequent papers is to classify the algorithmic 
problems in metableian groups in terms of the logspace 
and circuit complexities. 

In section 2 we introduce necessary definitions 
and results related to Groebner bases and state Theo-
rem 2.1 and Corollary 2.2 that allow us to compute 
module presentation of ideals in polynomial rings. 

In section 3 we discuss presentation of group rings 
of finitely generated abelian groups and modules over 
such rings by polynomials. 

In section 4 we interpret submodule computabil-
ity in terms of Groebner bases. 

In section 5 we interpret word, power, and conju-
gacy problems in finitely generated metabelian groups 
in terms of Groebner bases. 

2. Groebner bases 
In this section we will introduce some necessary 

definitions and results related to Groebner bases. For a 
detailed exposition we refer to [1] or [2]. 

Let 𝑅 be a commutative ring with 1, X =
{𝑥1, … , 𝑥𝑛} be a finite set of variables, and 𝑅[𝑋] =
𝑅[𝑥1, … , 𝑥𝑛]. A term 𝑡 in the variables 𝑥1, … , 𝑥𝑛 is a 

power product of the form 𝑥1
𝑒1 ⋅ … ⋅ 𝑥𝑛

𝑒𝑛  with 𝑒𝑖 ∈ ℕ for 

1 ≤ 𝑖 ≤ 𝑛. In particular, 1 = 𝑥1
0 ⋅ … ⋅ 𝑥𝑛

0 is a term. We 
denote by 𝑇(𝑋) the set of all terms in these variables. 
The divisibility relation | on 𝑇(𝑋) is defined by 𝑠|𝑡 iff 
there exists 𝑠′ ∈ 𝑇(𝑋) such that 𝑠𝑠′ = 𝑡. 

A term order ≤ is a linear order on 𝑇(𝑋) that sat-
isfies the following conditions: 

1. 1 ≤ 𝑡 for all 𝑡 ∈ 𝑇(𝑋). 
2. 𝑡1 ≤ 𝑡2 implies 𝑡1𝑠 ≤ 𝑡2𝑠 for all 𝑠, 𝑡1, 𝑡2 ∈ 𝑇(𝑋). 
A monomial in the variables {𝑥1, … , 𝑥𝑛} over 𝑅 is 

a polynomial of the form 𝑚 = 𝑎𝑡 with 0 ≠ 𝑎 ∈ 𝑅 and 
𝑡 ∈ 𝑇(𝑋). Here, 𝑎 is called the coefficient of 𝑚 and 𝑡 the 
term of 𝑚. The set of all monomials (in variables 

{𝑥1, … , 𝑥𝑛} over 𝑅) is denoted by 𝑀(𝑋, 𝑅). Multiplica-
tion on 𝑀(𝑋, 𝑅) is defined by 𝑎1𝑡1 ⋅ 𝑎2𝑡2 =
(𝑎1𝑎2)(𝑡1𝑡2), and 𝑀(𝑋, 𝑅) is clearly a commutative 
monoid. 

For a term order ≤ we define the relation ≼ on 
𝑀(𝑋, 𝑅) by setting  

𝑎𝑠 ≼ 𝑏𝑡 iff 𝑠 ≤ 𝑡 
for 0 ≠ 𝑎, 𝑏 ∈ 𝑅 and 𝑠, 𝑡 ∈ 𝑇(𝑋). We will call ≼ the 
quasi-order (reflexive and transitive relation) on 
𝑀(𝑋, 𝑅) induced by ≤. If 𝑚1, 𝑚2 are two monomials 
with the same term but with different coefficients, then 
𝑚1 ≠ 𝑚2 but 𝑚1 ≼ 𝑚2 and 𝑚2 ≼ 𝑚1. In this case we 
will say that 𝑚1 and 𝑚2 are equivalent w.r.t. ≼ and 
write 𝑚1 ∼ 𝑚2. Further we will denote this induced re-
lation ≼ by ≤. 

Clearly, every polynomial 𝑓 ∈ 𝑅[𝑋] has a unique 

representation in the form ∑ 𝑚𝑖
𝑘
𝑖=1  with 𝑚𝑖 ∈ 𝑀(𝑋, 𝑅) 

and 𝑚1 > ⋯ > 𝑚𝑘. The set of monomials occurring in 
such representation is denoted by 𝑀(𝑓) and called the 
set of monomials of 𝑓. The set 𝑇(𝑓) of terms of 𝑓 is the 
set of all terms of monomials 𝑚 ∈ 𝑀(𝑓). The set 𝐶(𝑓) 
of all coefficients of 𝑓 is the set of all coefficients of mo-
nomials 𝑚 ∈ 𝑀(𝑓). 

For any finite, non-empty subset 𝐴 of 𝑀(𝑋, 𝑅) 
consisting of pairwise inequivalent monomials, we de-
fine max(𝐴) to be the unique maximal element of 𝐴 
w.r.t. ≤. For any non-zero polynomial 𝑓 ∈ 𝑅[𝑋] we de-
fine w.r.t. ≤ the head term HT(𝑓) = max(𝑇(𝑓)), the 
head monomial HM(𝑓) = max(𝑀(𝑓)), and the head 
coefficient HC(𝑓) to be the coefficient of HM(𝑓). The 
reductum red(𝑓) of 𝑓 w.r.t. ≤ is defined as 𝑓 − HM(𝑓), 
i.e., 𝑓 = HM(𝑓) + red(𝑓). A polynomial 𝑓 ∈ 𝑅[𝑋] is 
called monic w.r.t. ≤ if 𝑓 ≠ 0 and HC(𝑓) = 1. 

For the rest of this section, let 𝑅 be a PID (or just ℤ). 
Let 𝑚1 = 𝑎1𝑡1 and 𝑚2 = 𝑎2𝑡2 be monomials in 

𝑅[𝑋]. We say that 𝑚2 divides 𝑚1 and write 𝑚2|𝑚1 if 
there is a monomial 𝑚3 ∈ 𝑅[𝑋] such that 𝑚1 = 𝑚2𝑚3. 

Let 𝑓, 𝑔, 𝑝 ∈ 𝑅[𝑋] with 𝑓, 𝑝 ≠ 0, and let 𝑃 be a 
subset of 𝑅[𝑋]. Then we say that 

1. 𝑓 D-reduces to 𝑔 modulo 𝑝 by eliminating 𝑚 
(notation 𝑓

𝑝
→ 𝑔[𝑚]), if 𝑚 ∈ 𝑀(𝑓) is such that 

HM(𝑝)|𝑚, say 𝑚 = 𝑚′ ⋅ HM(𝑝), and 𝑔 = 𝑓 − 𝑚′𝑝. 
2. 𝑓 D-reduces to 𝑔 modulo 𝑝 (notation 𝑓

𝑝
→ 𝑔), if 

𝑓
𝑝
→ 𝑔[𝑚] for some 𝑚 ∈ 𝑀(𝑓). 
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3. 𝑓 D-reduces to 𝑔 modulo 𝑃 (notation 𝑓
𝑃
→ 𝑔), if 

𝑓
𝑝
→ 𝑔 for some 𝑝 ∈ 𝑃. 

4. 𝑓 is D-reducible modulo 𝑝 if there exists 𝑔 ∈
𝑅[𝑋] such that 𝑓

𝑝
→ 𝑔. 

5. 𝑓 is D-reducible modulo 𝑃 if there exists 𝑔 ∈
𝑅[𝑋] such that 𝑓

𝑃
→ 𝑔. 

If 𝑓 is not D-reducible modulo 𝑝 (modulo 𝑃), then 
we say 𝑓 is in D-normal form modulo 𝑝 (modulo 𝑃). A 
D-normal form of 𝑓 modulo 𝑃 is a polynomial 𝑔 that is 
in D-normal form modulo 𝑃 and satisfies  

𝑓
𝑃
→∗ 𝑔 

where 
𝑃
→∗ is the reflexive-transitive closure of 

𝑃
→. We 

call 𝑓
𝑝
→ 𝑔[𝑚] a top-D-reduction of 𝑓 if 𝑚 = HM(𝑓). 

Whenever a top-D-reduction of 𝑓 exists (with 𝑝 ∈ 𝑃), 
we say that 𝑓 is top-D-reducible modulo 𝑝 (modulo 𝑃). 

Let 0 ≠ 𝑓 ∈ 𝑅[𝑋]. A standard representation of 𝑓 
w.r.t. a finite subset 𝑃 of 𝑅[𝑋] is a representation  

𝑓 = ∑ 𝑚𝑖

𝑘

𝑖=1

𝑝𝑖 , 

with monomials 𝑚𝑖  and 𝑝𝑖 ∈ 𝑃 such that HT(𝑚𝑖𝑝𝑖) ≤ 
≤ HT(𝑓) for 1 ≤ 𝑖 ≤ 𝑘. 

Lemma ([1], Lemma 10.3): Let 𝑃 be a finite subset 
of 𝑅[𝑋], 0 ≠ 𝑓 ∈ 𝑅[𝑋], and assume that 𝑓

𝑃
→∗ 0. Then 

𝑓 has a standard representation w.r.t. 𝑃. 
Definition (D-Gröbner basis, [1], Definition 10.4) 

A D-Gröbner basis is a finite subset 𝐺 of 𝑅[𝑋] with the 
property that all D-normal forms modulo 𝐺 of elements 
of Id(𝐺) equal zero. If 𝐼 is an ideal of 𝑅[𝑋], then a 
D-Gröbner basis of 𝐼 is a D-Gröbner basis that generates 
the ideal 𝐼. 

In other words, 𝐺 is a D-Gröbner basis if 𝑓
𝐺
→∗ 0 

for every 𝑓 ∈ Id(𝐺). 
Theorem 10.14 of [1] provides an algorithm 

which, when given a finite subset 𝑃 of 𝑅[𝑋], finds a 
D-Gröbner basis 𝐺 such that Id(𝑃) = Id(𝐺). 

Unfortunately, having a D-Gröbner basis 𝐺, 
𝐺
→ will 

not give us unique normal forms, which means that 
 𝑓 + Id(𝐺) = ℎ + Id(𝐺) will not imply 𝑓

𝐺
→∗ 𝑞 and 

 ℎ
𝐺
→∗ q. For example, consider the ring 𝑍[𝑥] and 

𝐺 = {2𝑥 + 1}, then 𝑓(𝑥) = 2𝑥2 + 2𝑥 has the two nor-
mal forms ℎ1 = 𝑥 and ℎ2 = −𝑥 − 1. 

However, for Euclidean domains with unique re-
mainders (in the sense of [1, Definition 10.16]) the the-
ory can be improved so that we obtain unique normal 
forms. We note that examples of such domains are ℤ 
and 𝐾[𝑋] for any field 𝐾. 

Now we define a new type of reduction over Eu-
clidean domain with unique reminders. 

Definition (E-reduction, [1], Definition 10.18)  
Let 𝑅 be a Euclidean domain with unique reminders  
and 𝑓, 𝑔, 𝑝 ∈ 𝑅[𝑋]. We say that 𝑓 E-reduces to 𝑔  
modulo 𝑝 and write 𝑓

𝑝
→ 𝑔  if there exists a monomial 

𝑚 = 𝑎𝑡 ∈ 𝑀(𝑓) such that HT(𝑝)|𝑡, say 𝑡 = 𝑠HT(𝑝), 
and  

𝑔 = 𝑓 − 𝑞𝑠𝑝, 
where 0 ≠ 𝑞 ∈ 𝑅 is the quotient of 𝑎 upon division with 
unique reminder by HC(𝑝). 

E-reduction modulo a finite subset of 𝑅[𝑋], E-re-
ducibility, and E-normal forms are defined in the obvi-
ous way. It is clear that E-reduction extends D-reduc-
tion, i.e., every D-reduction step is an E-reduction step. 

To obtain the desired bases that allow the compu-
tation of unique normal forms, we do not need another 
Gröbner basis algorithm. It will suffice to take a D-Gröb-
ner basis 𝐺 and E-reduce modulo 𝐺 [1, Theorem 10.23]. 

Further, when we refer to Gröbner bases and re-
ductions, we will assume a D-Gröbner bases and E-re-
ductions. In the reset of the section we use the theory 
above to obtain results required for algorithms in 
metabelian groups. 

Let 𝑃 = {𝑓1, … , 𝑓𝑞} be a finite subset of 𝑅[𝑋], 

where 𝑅 is a PID. Ideal  
Id(𝑃) = {𝑓1𝛼1 + ⋯ + 𝑓𝑞𝛼𝑞 ∣ 𝛼𝑖 ∈ 𝑅[𝑋]} 

may be treated as the 𝑅[𝑋]-module generated by 
𝑓1, … , 𝑓𝑞, then Id(𝑃) = 𝐹/𝑁, where 𝐹 is the free 

𝑅[𝑋]-module generated by 𝜉1, … , 𝜉𝑞  and 𝑁 is a sub-

module of 𝐹. Since 𝑅[𝑋] is Noetherian, so is 𝐹, there-
fore 𝑁 is finitely generated, and Id(𝑃) is finitely pre-
sented as an 𝑅[𝑋]-module. Our purpose will be to find 
its presentation. 

Observe that the set 𝑆 = {(𝛼1, … , 𝛼𝑞) ∣ 𝛼𝑖 ∈

𝑅[𝑋]} of all solutions of the equation  
𝑓1ℎ1 + ⋯ + 𝑓𝑞ℎ𝑞 = 0 

with indeterminates ℎ1, … , ℎ𝑞 is an 𝑅[𝑋]-submodule of 

𝑅[𝑋]𝑞. The set 𝑆 is called the (first) module of syzygies 
of (𝑓1, … , 𝑓𝑞). Computing a finite set of generators for 𝑆 

is a well known problem, and its solution actually gives 
us an 𝑅[𝑋]-module presentation of Id(𝑃). Proposition 
6.1 of [1] solves this problem for the case when 𝑅 is a 
field. Below we state analogous results that allows us to 
compute a presentation of Id(𝑃) for the case when 𝑅 is 
a PID. 

Theorem 2.1 Let 𝐺 be a Gröbner basis. Then there 
exists an algorithm to find a finite presentation of 𝑅[𝑋]-
module Id(𝐺) in terms of elements of 𝐺. 
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Corollary 2.2 Let 𝑃 be a finite subset of 𝑅[𝑋]. Then 
there exists an algorithm to find a finite presentation of 
𝑅[𝑋]-module Id(𝑃) in terms of elements of 𝑃. 

3. Representing group rings and modules by pol-
ynomials 

Let 𝐴 be a finitely generated abelian group given 
by its abelian presentation  

𝐴 = ⟨𝑥1, … , 𝑥𝑛 ∣ 𝑟1(𝑥1, … , 𝑥𝑛), … , 𝑟𝑠(𝑥1, … , 𝑥𝑛)⟩, 

where 𝑟𝑖(𝑥1, … , 𝑥𝑛) = 𝑥1
𝑐𝑖1 ⋅ … ⋅ 𝑥𝑛

𝑐𝑖𝑛 , 𝑐𝑖𝑗 ∈ ℤ. 

For any 𝑎 = 𝑥1
𝑘1 … 𝑥𝑛

𝑘𝑛 ∈ 𝐴 we denote by 𝑇(𝑎) 
the term in variables 𝑥1, 𝑦1, … , 𝑥𝑛 , 𝑦𝑛 of the form 

𝑇(𝑎) = 𝑠1
|𝑘1|

… 𝑠𝑛
|𝑘𝑛|

, where 𝑠𝑖 = 𝑥𝑖  if 𝑘𝑖 ≥ 0 and 𝑠𝑖 = 𝑦𝑖  
otherwise. Observe that the inverse procedure is 
obvious. 

Take  

𝑅𝐴 = ℤ[𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛], 
𝑃𝐴 = {𝑥1𝑦1 − 1, … , 𝑥𝑛𝑦𝑛 −  

−1, 𝑇(𝑟1) −1, … , 𝑇(𝑟𝑠) − 1} ⊂ 𝑅𝐴, 
and consider the map  

𝜏1: ℤ𝐴 → 𝑅𝐴/Id(𝑃𝐴), 
defined for 𝛼 = ∑ 𝑘𝑖

𝑚
𝑖=1 𝑎𝑖 ∈ ℤ𝐴 by  

𝜏1(𝛼) = ∑ 𝑘𝑖

𝑚

𝑖=1

𝑇(𝑎𝑖) + Id(𝑃𝐴). 

Clearly, 𝜏1 is a ring automorphism. 
Remark 3.1 In practice, the element 𝛼 would be 

presented as an element of Laurent ring with integer 
coefficients in variables 𝑥1, … , 𝑥𝑛. Although 𝛼 may have 
different such presentations if 𝐴 is not free, given a par-
ticular presentation, we uniquely pick the polynomial 
∑ 𝑘𝑖

𝑚
𝑖=1 𝑇(𝑎𝑖) as a representative of the residue class 

𝜏1(𝛼). For convenience, we further denote this repre-
sentative by 𝑝(𝜏1(𝛼)). Inversely, given any representa-
tive 𝑔 of the residue class 𝜏1(𝛼) as a polynomial in 𝑅𝐴, 
we uniquely pick the corresponding element 𝛽 of Lau-
rent ring with integer coefficients in variables 𝑥1, … , 𝑥𝑛 
and interpret it as an element of ℤ𝐴 and as a preimage 
of 𝑔, so that 𝜏1(𝛽) = 𝑔 + Id(𝑃𝐴). 

Further, when we refer to the size of 𝛼, we will 
assume the size of 𝜏1(𝛼), which is actually the size of 
the polynomial 𝑝(𝜏1(𝛼)). 

Let 𝐴 be a finitely generated abelian group and 
𝜏: ℤ𝐴 → 𝑅𝜏/Id(𝑃𝜏) be a ring isomorphism, where 𝑅𝜏  
is a ring of polynomials with integer coefficients and 
𝑃𝜏 ⊂ 𝑅𝜏 is finite. 

Let 𝐹 be a free right ℤ𝐴-module with basis 
𝜉1, … , 𝜉𝑞 , then any 𝑓 ∈ 𝐹 can be written uniquely in the 

form  
𝑓 = 𝜉1𝛼1 + ⋯ + 𝜉𝑞𝛼𝑞 , (𝛼𝑖 ∈ ℤ𝐴). 

This form can be naturally viewed as a polynomial 
in 𝜉𝑖  with coefficients in ℤ𝐴. Consider the  
ring ℤ𝐴[𝜉1, … , 𝜉𝑞] and its ideal Id(𝑃𝜉), where 

𝑃𝜉 = {𝜉𝑖𝜉𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑞}, and observe that the fac-

tor ring ℤ𝐴[𝜉1, … , 𝜉𝑞]/Id(𝑃𝜉) is a free ℤ𝐴-module with 

basis {1, 𝜉1, … , 𝜉𝑞}. Hence the natural map 

𝐹 → ℤ𝐴[𝜉1, … , 𝜉𝑞]/Id(𝑃𝜉) is a ℤ𝐴-module monomor-

phism. Denote  
𝑅𝐹 = 𝑅𝜏[𝜉1, … , 𝜉𝑞], 

𝑃𝐹 = 𝑃𝜏 ∪ 𝑃𝜉 ⊂ 𝑅𝐹 , 

then  
𝑅𝐹/Id(𝑃𝐹) ≃ 𝑅𝜏[𝜉1, … , 𝜉𝑞]/Id(𝑃𝐹) ≃ 

≃ (𝑅𝜏/Id(𝑃𝜏))[𝜉1, … , 𝜉𝑞]/Id(𝑃𝜉) ≃ 

≃ ℤ𝐴[𝜉1, … , 𝜉𝑞]/Id(𝑃𝜉). 

So we define the embedding  
𝜃𝜏: 𝐹 → 𝑅𝐹/Id(𝑃𝐹), 

that maps an element 𝑓 of the defined above to  

𝜃𝜏(𝑓) = ∑ 𝜉𝑖

𝑞

𝑖=1

𝜏(𝛼𝑖) + Id(𝑃𝜉) = 

= ∑ 𝜉𝑖

𝑞

𝑖=1

𝑝(𝜏(𝛼𝑖)) + Id(𝑃𝐹). 

We define the size of 𝑓 w.r.t. 𝜃𝜏 as the sum of sizes 
of 𝜏(𝛼1), … , 𝜏(𝛼𝑞). 

Arguments of Remark 3.1 apply to representation 
of 𝑓 as well. In the same way, by 𝑝(𝜃𝜏(𝑓)) ∈ 𝑅𝐹 we de-
note the representative of the residue class 𝜃𝜏(𝑓). 

4. Submodule computability 
All modules under consideration will be right 

modules. Let 𝑅 be a ring. If 𝑀 is an 𝑅-module generated 
by 𝑎1, … , 𝑎𝑞, then we write  

𝑀 = mod𝑅(𝑎1, … , 𝑎𝑞). 

If 𝐹 is a free 𝑅-module with basis 𝜉1, … , 𝜉𝑞 , then 

any 𝑓 ∈ 𝐹 can be written uniquely in the form  
𝑓 = 𝜉1𝑟1 + ⋯ + 𝜉𝑞𝑟𝑞 , (𝑟𝑖 ∈ 𝑅). 

Let 𝜙: 𝐹 → 𝑀 be an 𝑅-module epimorphism de-
fine by 𝜙(𝜉𝑖) = 𝑎𝑖, 𝑖 = 1, … , 𝑞. If 𝐾 = ker𝜙 is the sub-
module of 𝐹 generated by the words  

{𝑤1(𝜉1, … , 𝜉𝑞), … , 𝑤𝑝(𝜉1, … , 𝜉𝑞)}, 

where the 𝑤𝑖(𝜉1, … , 𝜉𝑞) are given explicitly as words in 

𝜉1, … , 𝜉𝑞 , then we write  

𝑀 = ⟨𝑎1, … , 𝑎𝑞 ∣ 𝑤1(𝑎1, … , 𝑎𝑞), … , 𝑤𝑝(𝑎1, … , 𝑎𝑞)⟩ 

for the corresponding presentation of 𝑀. If 𝑅 is right No-
etherian, then any finitely generated 𝑅-module 𝑀 has a 
finite presentation where the number of relations is fi-
nite. By Hall’s results [3] this is the case for 𝑅 = ℤ𝐺 
where 𝐺 is a polycyclic-by-finite group, and, in particular, 
for 𝑅 = ℤ𝐴 where 𝐴 is a finitely generated abelian group. 
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If 𝑀 is presented as above, then a word of 𝑀 is an 
𝑅-linear combination of the form 𝑎1𝑟1 + ⋯ + 𝑎𝑞𝑟𝑞, 

(𝑟𝑖 ∈ 𝑅). Membership in a submodule 𝐿 of 𝑀 is decida-
ble if there is an algorithm which determines for any 
word 𝑤 of 𝑀 whether or not 𝑤 belongs to 𝐿 (i.e. repre-
sents an element of 𝐿). 

If 𝑅 is a right Noetherian ring, then any finitely 
generated 𝑅-module 𝑀 is finitely presented and sub-
modules of 𝑀 are always finitely generated, hence fi-
nitely presented. 

Definition 4.1 An 𝑅-module 𝑀 over a right No-
etherian ring 𝑅 is called submodule computable if for 
any finite set {𝑣1, … , 𝑣𝑛} of words of 𝑀 there is 

1. an algorithm to compute a finite presentation 
of the submodule 𝐿 of 𝑀 generated by {𝑣1, … , 𝑣𝑛} on 
the given generators. 

2. an algorithm to decide membership in 𝐿. 
Definition 4.2 A right Noetherian ring 𝑅 is called 

submodule computable if finitely presented 𝑅-modules 
𝑀 are submodule computable uniformly in the presen-
tation for 𝑀. 

One of the principal results of [4] is the following 
theorem. 

Theorem 4.3 ([4], Theorem 2.12) Integral group 
ring of a polycyclic-by-finite group is submodule com-
putable. 

In particular, integral group ring of a finitely gen-
erated abelian group is submodule computable, so for 
any finitely generated metabelian group 𝐺 its derived 
subgroup 𝐺′ is submodule computable as a ℤ𝐺𝑎𝑏-mod-
ule. 

In the rest of this section we provide a practical 
proof in terms of Groebner bases for Theorem 4.3 for 
the case of integral group rings of finitely generated 
abelian groups. 

Let 𝐴 be a finitely generated abelian group, 𝑀 be 
a finitely presented ℤ𝐴-module given by its presenta-
tion, and 𝐹 be a free ℤ𝐴-module on 𝜉1, … , 𝜉𝑞 ,  

so 𝑀 ≃
𝐹

𝐾
 where 𝐾 is the submodule of 𝐹 generated by 

𝑤1(𝜉1, … , 𝜉𝑞), … , 𝑤𝑝(𝜉1, … , 𝜉𝑞). Let 𝑣1(𝑎1, … , 𝑎𝑞), … , 

𝑣𝑛(𝑎1, … , 𝑎𝑞) ∈ 𝑀 and 𝐿 is the ℤ𝐴-submodule of 𝑀 

generated by these words. Denote by 𝑁 the full 
preimage of 𝐿 under the natural homomorphism 
𝐹 → 𝐹/𝐾, clearly it is a submodule of 𝐹 generated by 
the words  

{𝑤1(𝜉1, … , 𝜉𝑞), … , 𝑤𝑝(𝜉1, … , 𝜉𝑞), 

𝑣1(𝜉1, … , 𝜉𝑞), … , 𝑣𝑛(𝜉1, … , 𝜉𝑞)}, 

and 𝐿 ≃ 𝑁/𝐾. 
A word 𝑤(𝑎1, … , 𝑎𝑞) ∈ 𝑀 belongs to 𝐿 iff 

𝑤(𝜉1, … , 𝜉𝑞) belongs to 𝑁. In particular, 

𝑤(𝑎1, … , 𝑎𝑞) = 0 in 𝑀 iff 𝑤(𝜉1, … , 𝜉𝑞) belongs to the 

submodule 𝐾 of 𝐹. So it is sufficient to decide member-
ship for finitely generated submodules of free ℤ𝐴-mod-
ules. 

Analogously, if 𝑁 has a ℤ𝐴-module presentation  

𝑁 = ⟨𝑤1, … , 𝑤𝑝, 𝑣1, … , 𝑣𝑛 ∣ 𝑧1, … , 𝑧𝑡⟩, 

where 𝑧𝑖  are words in the given generators, then  
𝐿 ≃ ⟨𝑣1, … , 𝑣𝑛 ∣ 𝑧1′, … , 𝑧𝑡′⟩, 

where 𝑧𝑖′ is obtained from 𝑧𝑖  by replacing 𝑤𝑗  with 0. So 

it is sufficient to compute presentations of finitely gen-
erated submodules of free ℤ𝐴-modules. 

Suppose that 𝑁 is a submodule of 𝐹 generated  

by 𝑢1, … , 𝑢𝑛, where 𝑢𝑖 = ∑ 𝜉𝑘
𝑞
𝑘=1 𝛼𝑖𝑘, 𝛼𝑖𝑘 ∈ ℤ𝐴, and 

 𝑖 = 1, … , 𝑛. We map elements of 𝐹 to 𝑅𝐹/Id(𝑃𝐹) using 
𝜃𝜏 as defined in section 3. 

Lemma 4.4 Let 𝑤 ∈ 𝐹, then 𝑤 ∈ 𝑁 iff 𝜃𝜏(𝑤) be-
longs to the ideal 𝐼 of 𝑅𝐹/Id(𝑃𝐹) generated by 
𝜃𝜏(𝑢1), … , 𝜃𝜏(𝑢𝑛). 

Corollary 4.5 Let 𝑤 ∈ 𝐹, then 𝑤 ∈ 𝑁 iff 𝑝(𝜃𝜏(𝑤)) 
belongs to the ideal 𝐽 of 𝑅𝐹  generated by 
𝑃𝐹 ∪ {𝑝(𝜃𝜏(𝑢𝑖)) ∣ 𝑖 = 1, … , 𝑛}. 

These results reduce submodule membership 
problem for 𝐹 to ideal membership problem for poly-
nomial ring 𝑅𝐹  over integers, which can be solved using 
Gröbner bases technics, see [1], [2]. 

Lemma 4.6 Submodule 𝑁 of 𝐹 and ideal 𝐼 of 
𝑅𝐹/Id(𝑃𝐹) generated by 𝜃𝜏(𝑢1), … , 𝜃𝜏(𝑢𝑛) are isomor-
phic as ℤ𝐴-modules. Given a ℤ𝐴-module presentation 
of 𝐼, one can compute the corresponding ℤ𝐴-module 
presentation of 𝑁. 

Corollary 4.7 Given an 𝑅𝐹-module presentation of 
the ideal 𝐽 of 𝑅𝐹  generated by 𝑃𝐹 ∪ {𝑝(𝜃𝜏(𝑢𝑖)) ∣ 
𝑖 = 1, … , 𝑛}, one can compute the corresponding 
ℤ𝐴-module presentation of 𝐼. 

So computation of submodules’ presentations in 
𝐹 reduces to computation of ideals’ presentations in 
polynomial ring 𝑅𝐹  over integers, which can be done by 
Corollary 2.2. 

5. Algorithmic problems in metabelian groups 
Denote by 𝒜2 the variety of all metabelian 

groups. It is known that finitely generated metabelian 
groups are finitely presented in 𝒜2, which means that 
any finitely generated metabelian group 𝐺 has a 
presentation of the form  

𝐺 = ⟨𝑥1, 𝑥2, … , 𝑥𝑛 ∣ 𝑟1, … , 𝑟𝑝⟩
𝒜2 , 

meaning that 𝐺 ≃ 𝑀𝑛/𝑁, where 𝑀𝑛 = 𝐹𝑛/𝐹𝑛
(2)

 is the 
free metabelian group of rank 𝑛, 𝐹𝑛 is the free group of 
rank 𝑛, and 𝑁 is the normal closure of 𝑟1, … , 𝑟𝑝 in 𝑀𝑛. 

The presentation above is called 𝒜2-presentation or 
metabelian presentation of 𝐺. 
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A metabelian group 𝐺 is an extension of abelian 
normal subgroup 𝐺′ by abelian group 𝐺𝑎𝑏 = 𝐺/𝐺′. The 
group 𝐺𝑎𝑏 acts on 𝐺′ by conjugation 𝑏(𝑎𝐺′) = 𝑏𝑎, 
where 𝑏 ∈ 𝐺′ and 𝑎 ∈ 𝐺𝑎𝑏. This action naturally ex-
tends to the action of the group ring ℤ𝐺𝑎𝑏  on 𝐺′:  

𝑏 (∑ 𝑘𝑖𝑎𝑖

𝑛

𝑖=1

) = ∏(𝑏𝑎𝑖)𝑘𝑖

𝑛

𝑖=1

. 

Thus derived subgroup 𝐺′ of a finitely generated 
metabelian group 𝐺 is a module over the finitely gener-
ated commutative ring ℤ𝐺𝑎𝑏. 

For algorithmic problems, it is advantageous to 
work with special 𝒜2-presentations. For our conven-
ience, we slightly alter the original definition from [5]. 

Definition 5.1 (Preferred presentation) By a pre-
ferred presentation of a finitely generated metabelian 
group 𝐺 we mean a finite 𝒜2-presentation of the form  

𝐺 = ⟨𝑥1, 𝑥2, … , 𝑥𝑛 ∣ 𝑅1 ∪ 𝑅2⟩𝒜2 , 
where: 

1. 𝑅1 is a finite set of words of the form  

∏ [𝑥𝑗 , 𝑥𝑖]𝛼𝑖𝑗

{(𝑖,𝑗)∣1≤𝑖<𝑗≤𝑛}

, 

where 𝛼𝑖𝑗 ∈ ℤ𝐺𝑎𝑏. 

2. 𝑅2 is a finite set of words 𝑟𝑖  of the form  

𝑥1
𝑚𝑖1 ⋅ … ⋅ 𝑥𝑛

𝑚𝑖𝑛𝑤, 

where 𝑚𝑖𝑗 ∈ ℤ, 𝑤 is a word of the form that elements 

of 𝑅1 have, and the matrix 𝑀 = (𝑚𝑖𝑗) is full rank. 

So the words in 𝑅2 determine a finite presentation 
of the group 𝐺𝑎𝑏, while those in 𝑅1, as we will show 
later, form a part of relations for a finite ℤ𝐺𝑎𝑏-presen-
tation of 𝐺′ in the generators [𝑥𝑗 , 𝑥𝑖] = 𝑥𝑗

−1𝑥𝑖
−1𝑥𝑗𝑥𝑖, 

1 ≤ 𝑖 < 𝑗 ≤ 𝑛. 
Below we state Theorem 9.5.1 of [6] for our ver-

sion of the definition of preferred presentation. 
Theorem 5.2 There is an algorithm which, when 

given a finitely generated metabelian group 𝐺 by its fi-
nite 𝒜2-presentation, finds a preferred 𝒜2-presenta-
tion of 𝐺. 

Let 𝐺 be a metabelian group generated by 
𝑥1, … , 𝑥𝑛. Its derived subgroup 𝐺′ is a ℤ𝐺𝑎𝑏-module 
generated by [𝑥𝑗 , 𝑥𝑖]. Since the ring ℤ𝐺𝑎𝑏  is Noetherian, 

𝐺′ is finitely presented as a ℤ𝐺𝑎𝑏-module. Thus a finite 
description of 𝐺′ exists, even if it is not finitely gener-
ated as a group. 

The module 𝑀𝑛′ of the free metabelian group 𝑀𝑛 
with basis {𝑥1, … , 𝑥𝑛} for 𝑛 = 2 is free over ℤ𝐴2 (where 
𝐴2 is the free abelian group of rank 2) with generating 
element [𝑥2, 𝑥1]. For 𝑛 ≥ 3 the module 𝑀𝑛′ is not free. 
All relations in the generators [𝑥𝑗 , 𝑥𝑖], 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 

follow from Jacobi relations  

[𝑥𝑖 , 𝑥𝑗]𝑥𝑘−1[𝑥𝑗 , 𝑥𝑘]𝑥𝑖−1[𝑥𝑘 , 𝑥𝑖]𝑥𝑗−1 = 1, 

for 𝑖, 𝑗, 𝑘 = 1, … , 𝑛. 
The following result is fundamental and admits an 

effective proof. 
Theorem 5.3 ([5], Theorem 3.1) There is an algo-

rithm which, when given a finitely generated metabe-
lian group 𝐺 by its finite 𝒜2-presentation, finds a finite 
ℤ𝐺𝑎𝑏-presentation of 𝐺′. 

In the rest of the section we review some classical 
algorithmic problems, namely, word, power, and conju-
gacy problems, that have been studied earlier in [5], [7], 
[8], [9]. We show that all these problems can be inter-
preted in a unified way in terms of Groebner bases. We 
note that conjugacy problem, in addition to Groebner 
bases, requires additional tool called Noskov’s Lemma. 

Word problem. Solvability of the word problem in 
finitely generated metabelian group 𝐺 may be proved 
by observing that 𝐺 is residually finite and finitely pre-
sented in the variety 𝒜2, so the standard procedure 
enumerating all finite quotients of 𝐺 and consequences 
of defining relations in 𝐺 solves the problem. 

A simpler solution of the word problem was later 
provided by Timoshenko in [8]. 

Having all the machinery introduced above, it is 
now easy to reduce the word problem in a finitely gen-
erated metabelian group 𝐺 to the ideal membership 
problem in a multivariate polynomial ring over integers. 

Suppose that 𝐺 is given by its metabelian presen-
tation and 𝑤 ∈ 𝐺. For any 𝑔 ∈ 𝐺 we denote 𝑔 = 𝑔𝐺′ ∈
𝐺𝑎𝑏. To check whether or not 𝑤 = 1 in 𝐺 perform the 
following steps: 

1. Compute a preferred presentation of 𝐺 using 
Theorem 5.2. 

2. Check if 𝑤 = 1 in 𝐺𝑎𝑏. It is possible since rela-
tions from 𝑅2 give us a presentation of 𝐺𝑎𝑏. If 𝑤 ≠ 1, 
then 𝑤 ≠ 1 in 𝐺, so further we assume 𝑤 = 1. 

3. Rewrite 𝑤 as an element of 𝐺′, i.e. in the form 
𝑤 = ∏[ 𝑥𝑗 , 𝑥𝑖]

𝛼𝑖𝑗, where 𝛼𝑖𝑗 ∈ ℤ𝐺𝑎𝑏. 

4. Compute ℤ𝐺𝑎𝑏-presentation of 𝐺′ using Theo-
rem 5.3  

𝐺′ = ⟨{𝜉𝑗𝑖 ∣ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛} ∣ 𝑤1(𝜉𝑗𝑖), … , 𝑤𝑝(𝜉𝑗𝑖)⟩. 

5. Using Corollary 4.7, check if in the free ℤ𝐺𝑎𝑏-
module 𝐹 generated by 𝜉𝑗𝑖  the word 𝑤(𝜉𝑗𝑖) belongs to 

the submodule generated by 𝑤1(𝜉𝑗𝑖), … , 𝑤𝑝(𝜉𝑗𝑖). 

Power problem. By the power problem in a group 
𝐺 we mean the problem of deciding for given 𝑢, 𝑣 ∈ 𝐺 

whether or not 𝑣 = 𝑢𝑘 for some 𝑘 ∈ ℤ. 
For a finitely generated metabelian group 𝐺, we 

first consider this problem for elements of 𝐺′. 
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Using the fact that we can get normal forms mod-
ulo an ideal in a polynomial ring over integers, one 
proves the following 

Lemma 5.4 There is an algorithm which, when 
given a finitely generated abelian group 𝑄, a finitely 
generated ℤ𝑄-module 𝑀, and elements 𝑎, 𝑏 ∈ 𝑀, de-
cides if there exists 𝑘 ∈ ℤ such that 𝑏 = 𝑎𝑘. 

Then the general case can be reduced to Lemma 5.4. 
Theorem 5.5 There is an algorithm which, when 

given a finitely generated metabelian group 𝐺 by its fi-
nite 𝒜2-presentation and elements 𝑢, 𝑣 ∈ 𝐺, decides if 

there exists 𝑘 ∈ ℤ such that 𝑣 = 𝑢𝑘. 
Conjugacy problem. The conjugacy problem in fi-

nitely generated metabelian groups was solved by Nos-
kov [9]. The proof utilizes the following algorithm for 
rings. 

Lemma 5.6 (Noskov’s Lemma) There is an algo-
rithms which, when given a finitely generated commu-
tative ring 𝑅 and a finite subset 𝑋 of the group of units 
𝑈(𝑅), finds a finite presentation of the subgroup ⟨𝑋⟩. 

As with power problem, the proof consists of two 
steps, where the first one requires Noskov’s lemma. 

Lemma 5.7 ([5], Lemma 3.7) There is an algorithm 
which, when given a finitely generated abelian group 𝑄, 
a finitely generated ℤ𝑄-module 𝑀, and elements 
𝑎, 𝑏 ∈ 𝑀, decides if 𝑎 and 𝑏 are 𝑄-conjugate, i.e. if there 
exists 𝑞 ∈ 𝑄 such that 𝑏 = 𝑎𝑞. 

From the lemma above, the general case follows:  
Theorem 5.8 ([5], Theorem 2.3) There is an algo-

rithms which, when given a finitely generated metabe-
lian group 𝐺 and elements 𝑥, 𝑦 ∈ 𝐺, decides if 𝑥 and 𝑦 
are conjugate in 𝐺. 
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