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1. Introduction

In this paper we begin the study of computational
complexity of the principal algorithmic problems in fi-
nitely generated metabelian groups. Our approach here
is two-fold: firstly, we rewrite and streamline some clas-
sical algorithms in metabelian groups to fit them into
the framework of Groebner bases and commutative al-
gebra (sometimes this requires a significant rebuild);
secondly, we show that in most cases this reduction to
the Groebner bases is in polynomial time. The main goal
for the subsequent papers is to classify the algorithmic
problems in metableian groups in terms of the logspace
and circuit complexities.

In section 2 we introduce necessary definitions
and results related to Groebner bases and state Theo-
rem 2.1 and Corollary 2.2 that allow us to compute
module presentation of ideals in polynomial rings.

In section 3 we discuss presentation of group rings
of finitely generated abelian groups and modules over
such rings by polynomials.

In section 4 we interpret submodule computabil-
ity in terms of Groebner bases.

In section 5 we interpret word, power, and conju-
gacy problems in finitely generated metabelian groups
in terms of Groebner bases.

2. Groebner bases

In this section we will introduce some necessary
definitions and results related to Groebner bases. For a
detailed exposition we refer to [1] or [2].

Let R be a commutative ring with 1, X =
{x1,...,x,} be a finite set of variables, and R[X] =

R[xq, ..., x,]. A term t in the variables xy,...,x, is a
power product of the form x;* - ...- x." with e; € N for
1 <i<n. Inparticular, 1 = x? - ...- x0 is a term. We

denote by T(X) the set of all terms in these variables.
The divisibility relation | on T(X) is defined by s|t iff
there exists s' € T(X) such that ss’ = t.

A term order < is a linear order on T (X) that sat-
isfies the following conditions:

1.1 <tforallt € T(X).

2.t; < t,impliest;s < tysforalls, ty, t, € T(X).

A monomial in the variables {x,, ..., x,} over R is
a polynomial of the form m = at with 0 #+# a € R and
t € T(X). Here, a is called the coefficient of m and t the
term of m. The set of all monomials (in variables
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{x1, ..., xn} over R) is denoted by M (X, R). Multiplica-
tion on M(X,R) is defined by a;t;-a,t, =
(a,a;)(tyty), and M(X,R) is clearly a commutative
monoid.

For a term order < we define the relation < on
M (X, R) by setting

as< bt iff s<t

for 0 #a,b €R and s,t € T(X). We will call < the
quasi-order (reflexive and transitive relation) on
M(X,R) induced by <. If m;, m, are two monomials
with the same term but with different coefficients, then
m; # m, but m; < m, and m, < m;. In this case we
will say that m; and m, are equivalent w.r.t. < and
write m; ~ m,. Further we will denote this induced re-
lation < by <.

Clearly, every polynomial f € R[X] has a unique
representation in the form ¥, m; with m; € M(X,R)
and my > +-- > m,,. The set of monomials occurring in
such representation is denoted by M (f) and called the
set of monomials of f. The set T (f) of terms of f is the
set of all terms of monomials m € M(f). The set C(f)
of all coefficients of f is the set of all coefficients of mo-
nomials m € M(f).

For any finite, non-empty subset A of M(X,R)
consisting of pairwise inequivalent monomials, we de-
fine max(A4) to be the unique maximal element of A
w.r.t. <. For any non-zero polynomial f € R[X] we de-
fine w.r.t. < the head term HT(f) = max(T(f)), the
head monomial HM(f) = max(M(f)), and the head
coefficient HC(f) to be the coefficient of HM(f). The
reductum red(f) of f w.r.t. <is defined as f — HM(f),
i.e., f=HM(f)+red(f). A polynomial f € R[X] is
called monic w.r.t. <if f # 0 and HC(f) = 1.

For the rest of this section, let R be a PID (or just Z).

Let my = a;t; and m, = a,t, be monomials in
R[X]. We say that m, divides m; and write m,|m; if
there is a monomial m; € R[X] such that my = m,ms.

Let f,g,p € R[X] with f,p # 0, and let P be a
subset of R[X]. Then we say that

1. f D-reduces to g modulo p by eliminating m
(notation f ; glm]), if me M(f) is such that

HM(p)|m, saym = m' - HM(p), and g = f — m'p.
2. f D-reduces to g modulo p (notation f = g), if
P

f ?g[m] for some m € M(f).
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3. f D-reduces to g modulo P (notation f e g),if
f;)gforsomep €EP.

4. f is D-reducible modulo p if there exists g €
R[X] such that f ? g-

5. f is D-reducible modulo P if there exists g €
R[X] such that f 239

If f is not D-reducible modulo p (modulo P), then
we say f is in D-normal form modulo p (modulo P). A
D-normal form of f modulo P is a polynomial g that is
in D-normal form modulo P and satisfies

f2'g

where ?* is the reflexive-transitive closure of e We
call f - g[m] a top-D-reduction of f if m = HM(f).

p

Whenever a top-D-reduction of f exists (with p € P),

we say that f is top-D-reducible modulo p (modulo P).
Let 0 # f € R[X]. A standard representation of f

w.r.t. a finite subset P of R[X] is a representation

k
f= Z m; pi,
i=1

with monomials m; and p; € P such that HT(m;p;) <
<HT(f)for1 <i<k.

Lemma ([1], Lemma 10.3): Let P be a finite subset
of R[X], 0 # f € R[X], and assume that f ?* 0. Then

f has a standard representation w.r.t. P.

Definition (D-Grobner basis, [1], Definition 10.4)
A D-Grobner basis is a finite subset G of R[X] with the
property that all D-normal forms modulo G of elements
of 1d(G) equal zero. If [ is an ideal of R[X], then a
D-Grobner basis of I is a D-Grébner basis that generates
the ideal I.

In other words, G is a D-Grobner basis if f E)* 0

for every f € 1d(G).

Theorem 10.14 of [1] provides an algorithm
which, when given a finite subset P of R[X], finds a
D-Grobner basis G such that I[d(P) = 1d(G).

Unfortunately, having a D-Grébner basis G, ? will

not give us unique normal forms, which means that
f+1d(G) = h +1d(G) will not imply f?* q and
h?* g. For example, consider the ring Z[x] and

G = {2x + 1}, then f(x) = 2x? + 2x has the two nor-
mal forms hy = xand h, = —x — 1.

However, for Euclidean domains with unique re-
mainders (in the sense of [1, Definition 10.16]) the the-
ory can be improved so that we obtain unique normal
forms. We note that examples of such domains are Z
and K[X] for any field K.

Now we define a new type of reduction over Eu-
clidean domain with unique reminders.

Definition (E-reduction, [1], Definition 10.18)
Let R be a Euclidean domain with unique reminders
and f,g,p € R[X]. We say that f E-reduces to g
modulo p and write f ? g if there exists a monomial

m = at € M(f) such that HT(p)|t, say t = sHT(p),
and

g=f—asp
where 0 # q € R is the quotient of a upon division with
unique reminder by HC(p).

E-reduction modulo a finite subset of R[X], E-re-
ducibility, and E-normal forms are defined in the obvi-
ous way. It is clear that E-reduction extends D-reduc-
tion, i.e., every D-reduction step is an E-reduction step.

To obtain the desired bases that allow the compu-
tation of unique normal forms, we do not need another
Grobner basis algorithm. It will suffice to take a D-Grob-
ner basis G and E-reduce modulo G [1, Theorem 10.23].

Further, when we refer to Grobner bases and re-
ductions, we will assume a D-Grobner bases and E-re-
ductions. In the reset of the section we use the theory
above to obtain results required for algorithms in
metabelian groups.

Let P ={f1,..,fq} be a finite subset of R[X],
where R is a PID. Ideal

Id(P) = {fiay + -+ fyaq | a; € R[X]}

may be treated as the R[X]-module generated by
f1) e, fq, then 1d(P) = F/N, where F is the free
R[X]-module generated by &;,...,&; and N is a sub-
module of F. Since R[X] is Noetherian, so is F, there-
fore N is finitely generated, and 1d(P) is finitely pre-
sented as an R[X]-module. Our purpose will be to find
its presentation.

Observe that the set §={(aj,..,a;)la;€
R[X]} of all solutions of the equation

fihi + -+ fghg =0

with indeterminates hy, ..., h, is an R[X]-submodule of
R[X]9. The set S is called the (first) module of syzygies
of (f1, .., fg). Computing a finite set of generators for §
is a well known problem, and its solution actually gives
us an R[X]-module presentation of Id(P). Proposition
6.1 of [1] solves this problem for the case when R is a
field. Below we state analogous results that allows us to
compute a presentation of Id(P) for the case when R is
a PID.

Theorem 2.1 Let G be a Grobner basis. Then there
exists an algorithm to find a finite presentation of R[X]-
module Id(G) in terms of elements of G.
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Corollary 2.2 Let P be afinite subset of R[X]. Then
there exists an algorithm to find a finite presentation of
R[X]-module Id(P) in terms of elements of P.

3. Representing group rings and modules by pol-
ynomials

Let A be a finitely generated abelian group given
by its abelian presentation

A= (%1, 00, X | 71001, e, X)),y e, Ts (g, e, X)),
where 73(xy, .., Xp) = X3 - X, ¢ € I

For any a = xfl ...x,’,f" € A we denote by T(a)
the term in variables xi,yy,...,x,, ¥, of the form
T(a) = 51|k1| ...s,llknl,where s; =x;ifk; = 0ands; = y;
otherwise. Observe that the inverse procedure is
obvious.

Take
Ra = Z[x1, Y1, e X Vi,

Py = {xl:VI =1, ., X0 Y0 —
—-1,T(ry) —1,...,T(ry) — 1} € Ry,
and consider the map
T,:ZA = Ry /1d(Py),
defined for a = Y%, k; a; € ZA by
m

7, (@) = Z k; T(a;) + 1d(P,).

Clearly, 7, is a ring automorphism.

Remark 3.1 In practice, the element @ would be
presented as an element of Laurent ring with integer
coefficients in variables x4, ..., x,,. Although @ may have
different such presentations if A is not free, given a par-
ticular presentation, we uniquely pick the polynomial
Yt ki T(a;) as a representative of the residue class
7, (). For convenience, we further denote this repre-
sentative by p(7;(«)). Inversely, given any representa-
tive g of the residue class 7, (@) as a polynomial in Ry,
we uniquely pick the corresponding element 8 of Lau-
rent ring with integer coefficients in variables x4, ..., x,
and interpret it as an element of ZA and as a preimage
of g,sothat 7,(B) = g + 1d(Py).

Further, when we refer to the size of a, we will
assume the size of t,(a), which is actually the size of
the polynomial p(7;(@)).

Let A be a finitely generated abelian group and
T: ZA = R, /1d(P,) be a ring isomorphism, where R;
is a ring of polynomials with integer coefficients and
P, c R; is finite.

Let F be a free right ZA-module with basis
&1, .., &g, thenany f € F can be written uniquely in the
form

f=&a + -+ a4 (q; € ZA).
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This form can be naturally viewed as a polynomial
in & with coefficients in ZA. Consider the
ring ZA[¢y,...,§q] and its ideal Id(P;), where
Py = {fig‘j [1<i<j< q}, and observe that the fac-
tor ring ZA[&;, ..., §q]/1d(P¢) is a free ZA-module with
basis {1,¢;, ...,fq}. Hence the natural map
F > ZA[¢,, ...,&4]/1d(P;) is a ZA-module monomor-
phism. Denote

Rr = R[$1, ---’fq]'
Pz = P, U P; C Ry,
then
Rp/1d(Pr) = Re[$1, .., §q]/1d(Pr) =
= (Re/1d(P))[$1, -0 §q1/1d(Pe) =
= ZA[¢,, ..., &q1/1d(Py).
So we define the embedding
6.:F - Rp/1d(Py),
that maps an element f of the defined above to

q
0:() = ) &e(a) +1d(P;) =

i=1

q
= ) &ip((a) +14(P).

i=1
We define the size of f w.r.t. 8, as the sum of sizes

of t(ay), ..., T(ay).

Arguments of Remark 3.1 apply to representation
of f as well. In the same way, by p(6.(f)) € Ry we de-
note the representative of the residue class 6;(f).

4. Submodule computability

All modules under consideration will be right
modules. Let R be aring. If M is an R-module generated
by a4, ..., aq, then we write

M = modg(ay, ..., aq).

If F is a free R-module with basis &5, ..., &g, then
any f € F can be written uniquely in the form

=&+ -+ &, (1 ER).

Let ¢: F - M be an R-module epimorphism de-
fineby ¢(§;) =a;,i =1, ...,q. If K = ker¢ is the sub-
module of F generated by the words

Wity or €Dy wees Wy (1 s €D
where the w; (&4, ..., &4) are given explicitly as words in
&1, e, &g, then we write
M = (al, s g | w; (a4, ...,aq), ...,wp(al, ...,aq))

for the corresponding presentation of M. If R is right No-
etherian, then any finitely generated R-module M has a
finite presentation where the number of relations is fi-
nite. By Hall’s results [3] this is the case for R = ZG
where G is a polycyclic-by-finite group, and, in particular,
for R = ZA where A is a finitely generated abelian group.
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If M is presented as above, then a word of M is an
R-linear combination of the form a;r + -+ aq1,
(r; € R). Membership in a submodule L of M is decida-
ble if there is an algorithm which determines for any
word w of M whether or not w belongs to L (i.e. repre-
sents an element of L).

If R is a right Noetherian ring, then any finitely
generated R-module M is finitely presented and sub-
modules of M are always finitely generated, hence fi-
nitely presented.

Definition 4.1 An R-module M over a right No-
etherian ring R is called submodule computable if for
any finite set {v,, ..., v, } of words of M there is

1. an algorithm to compute a finite presentation
of the submodule L of M generated by {v, ..., v,} on
the given generators.

2. an algorithm to decide membership in L.

Definition 4.2 A right Noetherian ring R is called
submodule computable if finitely presented R-modules
M are submodule computable uniformly in the presen-
tation for M.

One of the principal results of [4] is the following
theorem.

Theorem 4.3 ([4], Theorem 2.12) Integral group
ring of a polycyclic-by-finite group is submodule com-
putable.

In particular, integral group ring of a finitely gen-
erated abelian group is submodule computable, so for
any finitely generated metabelian group G its derived
subgroup G’ is submodule computable as a ZG,;,-mod-
ule.

In the rest of this section we provide a practical
proof in terms of Groebner bases for Theorem 4.3 for
the case of integral group rings of finitely generated
abelian groups.

Let A be a finitely generated abelian group, M be
a finitely presented ZA-module given by its presenta-
tion, and F be a free ZA-module on ¢&;,...,&,,

soM = %where K is the submodule of F generated by
Wl(fl, ) fq), ...,Wp(fl, ...,Eq). Let vl(al, ) aq), .
Vn(ay, ..., aq) €M and L is the ZA-submodule of M
generated by these words. Denote by N the full
preimage of L under the natural homomorphism
F = F /K, clearly it is a submodule of F generated by
the words

wi(&s, . &0) e wi (&1, &),

V1 (1 wer €D eer Vn &1 s €D},
and L ~ N/K.

A word w(ay,..,a;) €M belongs to L iff

w(éy,...,€q) belongs to N. In particular,

W(al, ...,aq) =0in M iff w(&, .., €q) belongs to the
submodule K of F. So it is sufficient to decide member-
ship for finitely generated submodules of free ZA-mod-
ules.

Analogously, if N has a ZA-module presentation

N = (wl, ey Wy, Vg, e, Up | z4, ...,zt>,
where z; are words in the given generators, then
L=(vy,..,v, 12z ..,2),
where z;" is obtained from z; by replacing w; with 0. So
it is sufficient to compute presentations of finitely gen-
erated submodules of free ZA-modules.

Suppose that N is a submodule of F generated
by uy, ..., u,, where w; = N7_, & ay, ay € ZA, and
i =1,..,n. We map elements of F to R /Id(P) using
0, as defined in section 3.

Lemma 4.4 Let w € F, then w € N iff 8,(w) be-
longs to the ideal I of Rp/Id(Pr) generated by
0 (u1), ., 0z ().

Corollary 4.5 Let w € F, thenw € N iff p(6,(w))
belongs to the ideal J of Ry generated by
P-U{pO.(u;))Ii=1,..,n}

These results reduce submodule membership
problem for F to ideal membership problem for poly-
nomial ring Ry over integers, which can be solved using
Grobner bases technics, see [1], [2].

Lemma 4.6 Submodule N of F and ideal I of
Ry /1d(Pg) generated by 0, (u,), ..., 6;:(u,) are isomor-
phic as ZA-modules. Given a ZA-module presentation
of I, one can compute the corresponding ZA-module
presentation of N.

Corollary 4.7 Given an Rp-module presentation of
the ideal J of Rp generated by Pp U {p(6;(w;)) |
i=1,..,n}, one can compute the corresponding
ZA-module presentation of I.

So computation of submodules’ presentations in
F reduces to computation of ideals’ presentations in
polynomial ring R over integers, which can be done by
Corollary 2.2.

5. Algorithmic problems in metabelian groups

Denote by A? the variety of all metabelian
groups. It is known that finitely generated metabelian
groups are finitely presented in <42, which means that
any finitely generated metabelian group G has a
presentation of the form

G = (xl,xz, v X | 1, ...,rp)ﬂz,

meaning that G = M,,/N, where M,, = Fn/Fn(z) is the
free metabelian group of rank n, F, is the free group of
rank n, and N is the normal closure of 7, ey Ty in M,.
The presentation above is called A%-presentation or
metabelian presentation of G.
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A metabelian group G is an extension of abelian
normal subgroup G’ by abelian group G,, = G/G'. The
group G, acts on G’ by conjugation b(aG") = b?%,
where b € G' and a € G,;,. This action naturally ex-
tends to the action of the group ring ZG,, on G':

b (i kl-al-> = ﬁ(b“i)"i.
i=1 i=1

Thus derived subgroup G’ of a finitely generated
metabelian group G is a module over the finitely gener-
ated commutative ring ZG, .

For algorithmic problems, it is advantageous to
work with special A2%-presentations. For our conven-
ience, we slightly alter the original definition from [5].

Definition 5.1 (Preferred presentation) By a pre-
ferred presentation of a finitely generated metabelian
group G we mean a finite A%-presentation of the form

G = (x4, X2, ..., Xn | R{ UR,) 42,

where:

1. R, is a finite set of words of the form

[xj’xi]aij!
(@i, )l1si<j=n}

where a;; € ZGgp.

2. R, is a finite set of words 7; of the form

xln“ Xy W,

where m;; € Z, w is a word of the form that elements
of R; have, and the matrix M = (m;;) is full rank.

So the words in R, determine a finite presentation
of the group G, while those in Ry, as we will show
later, form a part of relations for a finite ZG,,-presen-
tation of G’ in the generators [x;,x;] = xj'lxi'lxjxl-,
1<i<j<sn

Below we state Theorem 9.5.1 of [6] for our ver-
sion of the definition of preferred presentation.

Theorem 5.2 There is an algorithm which, when
given a finitely generated metabelian group G by its fi-
nite A?-presentation, finds a preferred A2-presenta-
tion of G.

Let G be a metabelian group generated by
X1, -, Xp. Its derived subgroup G’ is a ZG,,-module
generated by [x;, x;]. Since the ring ZG,, is Noetherian,
G' is finitely presented as a ZG,4j,-module. Thus a finite
description of G’ exists, even if it is not finitely gener-
ated as a group.

The module M,,’ of the free metabelian group M,
with basis {x;, ..., x,,} forn = 2 is free over ZA? (where
A? is the free abelian group of rank 2) with generating
element [x,, x,]. For n > 3 the module M,,’ is not free.
All relations in the generators [xj,xi], 1<i<j<n,
follow from Jacobi relations
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[os, 2616 [, 2 )50 [, 2, 197 = 1,
fori,j,k=1,..,n.

The following result is fundamental and admits an
effective proof.

Theorem 5.3 ([5], Theorem 3.1) There is an algo-
rithm which, when given a finitely generated metabe-
lian group G by its finite A2-presentation, finds a finite
ZG 4,-presentation of G'.

In the rest of the section we review some classical
algorithmic problems, namely, word, power, and conju-
gacy problems, that have been studied earlier in [5], [7],
[8], [9]. We show that all these problems can be inter-
preted in a unified way in terms of Groebner bases. We
note that conjugacy problem, in addition to Groebner
bases, requires additional tool called Noskov’s Lemma.

Word problem. Solvability of the word problem in
finitely generated metabelian group G may be proved
by observing that G is residually finite and finitely pre-
sented in the variety A%, so the standard procedure
enumerating all finite quotients of G and consequences
of defining relations in G solves the problem.

A simpler solution of the word problem was later
provided by Timoshenko in [8].

Having all the machinery introduced above, it is
now easy to reduce the word problem in a finitely gen-
erated metabelian group G to the ideal membership
problem in a multivariate polynomial ring over integers.

Suppose that G is given by its metabelian presen-
tationand w € G. Forany g € G we denote g = gG' €
Ggap- To check whether or not w = 1 in G perform the
following steps:

1. Compute a preferred presentation of G using
Theorem 5.2.

2. Check if w = 1 in Gg,. It is possible since rela-
tions from R, give us a presentation of G,. If W # 1,
thenw # 1in G, so further we assume w = 1.

3. Rewrite w as an element of G, i.e. in the form
w = [1[ %, x;]“U, where a;; € ZGp.

4. Compute ZG,p,-presentation of G’ using Theo-
rem5.3

G =({i11<i<j<n}lw (&) wp(E))-

5. Using Corollary 4.7, check if in the free ZGy,-
module F generated by ¢;; the word w(¢};) belongs to
the submodule generated by w; (&), ..., wp (§i)-

Power problem. By the power problem in a group
G we mean the problem of deciding for given u,v € G
whether or not v = u”* for some k € Z.

For a finitely generated metabelian group G, we
first consider this problem for elements of G'.
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Using the fact that we can get normal forms mod-
ulo an ideal in a polynomial ring over integers, one
proves the following

Lemma 5.4 There is an algorithm which, when
given a finitely generated abelian group Q, a finitely
generated ZQ-module M, and elements a,b € M, de-
cides if there exists k € Z such that b = ak.

Then the general case can be reduced to Lemma 5.4.

Theorem 5.5 There is an algorithm which, when
given a finitely generated metabelian group G by its fi-
nite le-presentation and elements u, v € G, decides if
there exists k € Z such that v = u¥.

Conjugacy problem. The conjugacy problem in fi-
nitely generated metabelian groups was solved by Nos-
kov [9]. The proof utilizes the following algorithm for
rings.

Lemma 5.6 (Noskov’'s Lemma) There is an algo-
rithms which, when given a finitely generated commu-
tative ring R and a finite subset X of the group of units
U(R), finds a finite presentation of the subgroup (X).

As with power problem, the proof consists of two
steps, where the first one requires Noskov’s lemma.

Lemma 5.7 ([5], Lemma 3.7) There is an algorithm
which, when given a finitely generated abelian group Q,
a finitely generated ZQ-module M, and elements
a,b € M, decides if a and b are Q-conjugate, i.e. if there
exists ¢ € Q such that b = aq.

From the lemma above, the general case follows:

Theorem 5.8 ([5], Theorem 2.3) There is an algo-
rithms which, when given a finitely generated metabe-
lian group G and elements x,y € G, decides if x and y
are conjugate in G.
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