Научная статья на тему 'Актуальные проблемы обеспечения устойчивости критического бортового оборудования к ЭМИ на этапе окр'

Актуальные проблемы обеспечения устойчивости критического бортового оборудования к ЭМИ на этапе окр Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
185
111
Поделиться
Ключевые слова
ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ / ВИРТУАЛЬНОЕ МОДЕЛИРОВАНИЕ / САМОЛЕТ / ЗАЩИТА / ELECTROMAGNETIC COMPATIBILITY / VIRTUAL MODELING / AIRCRAFT / PROTECTION

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Петряков Евгений Юрьевич

В статье рассмотрено применение виртуального метода анализа электромагнитной совместимости при проведении ОКР самолета Ту-204. Рассмотрена концепция разработки БКС в рамках полного цикла ОКР самолёта. Приведен пример виртуального моделирования воздействия электромагнитных полей высокой интенсивности в соответствии с КТ-160D на участок электрожгута.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Петряков Евгений Юрьевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ACTUAL PROBLEMS OF ENSURING RESISTANCE OF CRITICAL ONBOARD EQUIPMENT TO THE EMI AT THE STAGE OF EXPERIMENTAL DESIGN DEVELOPMENT

In article application of a virtual method of the analysis the electromagnetic compatibility when carrying out experimental design development of Tu-204 aircraft is considered. The concept of development of onboard cable network within a full cycle of experimental design development of aircraft is considered. The example of virtual modeling the influence of high intensity electromagnetic fields according to KT-160D on electro plaits is given.

Текст научной работы на тему «Актуальные проблемы обеспечения устойчивости критического бортового оборудования к ЭМИ на этапе окр»

УДК 004.891+629.7.01

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОСТИ КРИТИЧЕСКОГО БОРТОВОГО ОБОРУДОВАНИЯ К ЭМИ

НА ЭТАПЕ ОКР

© 2014 Е.Ю. Петряков

Ульяновский филиал КБ ОАО «Туполев»

Поступила в редакцию 08.09.2014

В статье рассмотрено применение виртуального метода анализа электромагнитной совместимости при проведении ОКР самолета Ту-204. Рассмотрена концепция разработки БКС в рамках полного цикла ОКР самолёта. Приведен пример виртуального моделирования воздействия электромагнитных полей высокой интенсивности в соответствии с КТ-160Б на участок электрожгута.

Ключевые слова: электромагнитная совместимость, виртуальное моделирование, самолет, защита

В настоящее время при разработке и создании летательного аппарата большая часть функций управления самолетом автоматизируется и, соответственно, возрастает объем внедрения в авиационные системы цифрового электронного оборудования, работа которого напрямую связана с электромагнитной совместимостью (ЭМС) технических средств (ТС) на борту и стойкостью к ЭМИ природного (молнии, солнечная активность) и техногенного характера (радиолокационные станции, промышленные объекты). Актуальность защиты самолёта от ЭМИ растёт в связи со следующими фактами:

- уменьшаются уровни, токов и напряжений, номинально действующих в самолётных цепях как следствие микроминиатюризации и функциональной интеграции самолётного оборудования;

- увеличивается ширина спектра рабочих частот токов, протекающих в самолётных электроцепях как следствие роста объёма и скорости обмена информации между различными функциональными группами бортового оборудования;

- увеличивается доля неметаллических материалов в конструкции самолёта как средство для снижения его массы и повышения технологичности;

- большая плотность размещения мощных источников и потребителей электрической энергии в малом объеме, исключающая естественное ослабление плотности ЭМИ за счет удаления его источника;

Петряков Евгений Юрьевич, инженер-конструктор. E-mail: ehix@narod.ru

- жесткие требования по ограничению массы электромагнитных экранов и защитных устройств, ограничивающих уровень электромагнитных наводок в бортовых электрических цепях.

Для безопасной эксплуатации ЛА необходимо, чтобы ТС функционировали удовлетворительно в окружающей электромагнитной обстановке, при этом, не создавая недопустимых электромагнитных помех для работы других ТС. Небольшие габариты ЛА и большой объём установленной авионики усложняет задачу многократно и актуальность решения ЭМС выходит на первый план.

Разработка бортовой кабельной сети ЛА, устойчивой к ЭМИ. Решение основной задачи обеспечения устойчивости критических функций бортового оборудования первой категории к ЭМИ достигается выполнением НТД по проектированию бортовой кабельной сети (БКС) и ПКИ. Так как оборудование и готовые системы ограничиваются локальными испытаниями (по КТ-160D), сертифицируются отдельно от самолета, то возникает проблема устойчивости их работы совместно с БКС самолёта.

На этапе ОКР, согласно АП-25, оценивается устойчивость критических функций оборудования самолёта к воздействию ЭМИ. Требуется доказать устойчивость к двум классам ЭМИ (воздействие атмосферного электричества, в первую очередь, разрядов молнии в землю и межоблачных, возможность целенаправленного воздействия локализованного ЭМИ на ЛА с целью его повреждения или уничтожения) и электромагнитного поля высокой интенсивности (ИЖР) (большая плотность размещения мощных источников и потребителей электрической энергии

1540

в малом объеме). Согласно требований п. 25.1316 АП-25 к защите от воздействия молний (прямому и непрямому), каждая электрическая или электронная система, нарушение каторой может воспрепятствовать безопасному продолжению полета и совершению посадки самолета, должна быть сконструирована и установлена таким образом, чтобы при воздействии и после воздействия молний на самолет она функционировала нормально.

Организация полномасштабных испытаний, всего готового самолета, необходима для обеспечения надежного функционирования ЛА в присутствии мощных источников электромаг-

нитных помех. Проблема таких испытаний связана:

- с принципиально более жесткими требованиями к источникам излучения и генераторам испытательного импульсного тока. Следует указать, что при заданной крутизне фронта токового импульса рабочее напряжение источника приблизительно пропорционально длине испытуемого элемента. Так, для фюзеляжа ЛА длиной ~ 50 м напряжение источника должно быть в пределах 2000 кВ, если требуется обеспечить крутизну фронта тока на уровне 5* 1010 А/с (средняя по мощности молния);

Рис. 1. Алгоритм обеспечения соответствия ЛА

Рис. 2. Концепция виртуального цикла ОКР

1541

- с исключительно широким частотным диапазоном возможных электромагнитных воздействий испытаний на ЭМС готового изделия;

- с длительными сроками и высокой стоимостью, что влечет к удорожанию всего ОКР ЛА.

Переход к виртуальному проектированию и разработке БКС ЛА. Развитие и накопление математического аппарата (модели, функции взаимодействии, параметризация среды) и специальной вычислительной программной системы (HIRF-SE), позволяют охватить весь ОКР по защите от ЭМИ оборудование самолета.

Достигаемые цели данной методики: • Сокращение времени на ОКР ЛА. Оценка в виртуальной среде моделей реального монтажа увеличивает вероятность (в пределе гарантирует) положительной оценки при сертификации, тем самым исключаются многократные доработки борта ЛА связанные с требованиями КТ-160.

• Снижение затрат на ОКР ЛА. Так как все уточнения монтажа по результатам виртуальной «сертификации» происходят только в моделях и в уточнениях КД, отсутствуют дорогостоящие доработки уже изготовленного самолета.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

• Сокращение сроков сертификации.

Создание инструмента виртуального моделирования, который делает практически невероятным событие "Отрицательный" на рис. 2.

Расчетная модель с соответствующим программным обеспечением, численные эксперименты на которой позволяют:

- выделить для последующего детального анализа наиболее опасные источники и зоны возбуждения электромагнитных помех (рис. 3);

- оценить на этапе разработки самолёта достаточность предпринятых мер защиты от ЭМИ;

- подтвердить частично или полностью соответствие конструкции самолёта требованиям ЭМС;

- сократить время испытаний самолёта;

- уменьшить стоимость испытаний.

Рис. 3. Виртуальная модель ЛА в ШRF-SE

Исследование воздействия ШКР в соответствии с КТ-160Б на участок электрожгута.

Виртуальный участок эл. монтажа создается в среде и по правилам НШБ^Е, основываясь на КД реального участка электромонтажа. Виртуальный участок эл. монтажа содержит все конструктивные элементы реального монтажа с детальным описанием их электромагнитных свойств, а также учитывает 3D конфигурацию

реального эл. жгута и окружающую обстановку в месте его прокладки на борту (рис. 4, 5).

Восприимчивость виртуального эл. монтажа оценивается по величине и характеру виртуальных токов, протекающих в электронных моделях проводников под действием виртуальной НГЯБ среды и по взаимной индукции их взаимодействия. На рис. 6 показан график ЭМС, где Port1 - источник сигнала, а P1 и P3 - рецепторы.

1542

Рис. 4. Состав модели жгута БКС

Рис. 5. Вид 3D модели жгута БКС

Рис. 6. Напряжения в электронных моделях проводников под действием виртуальной НГЯБ среды и взаимной индукции

Программа CST CABLE STUDIO (HIRF-SE) позволяет оценить ЭМС жгутов самолета. Инструмент исследований позволяет видеть создаваемые жгутом электромагнитные поля, представленные в виде цветных векторов, характеризующих численное значение напряженности

поля в исследуемых точках пространства. Также есть возможность выявить уровень помехи в отдельно исследуемом проводнике жгута. Тем самым на раннем этапе конструирования выявить потенциально помех создаваемые зоны и участки цепи.

1543

Выводы: одним из вариантов проверки (сертификации) соответствия нормам воздействия излучения электромагнитных полей на ЛА является переход к виртуальным методам ОКР по ЭМС. Используя математические модели и специальные для этих целей программные продукты можно виртуально моделировать воздействие HIRF в соответствии с КТ-160D. Получение зависимости наведённых токов и напряжений от частоты облучающего поля на участок электрожгута необходимо для подтверждения норм защиты от ЭМИ в соответствии КТ-160D и получения доказательной базы для предварительной сертификации. В этом случае ОКР можно провести в кратчайшие сроки и с минимальными затратами, и получить модель (систему) устойчивую к воздействию ЭМИ и совместимую с другими ТС.

Рассмотренная концепция виртуального ОКР позволяет достичь следующих качественно новых показателей дальнейшего развития проекта Ту-204:

- повышение безопасности Ла;

- уменьшение сроков и стоимости ОКР;

- переход к «виртуальной» сертификации;

- освоение программы «более электрический самолет»;

- уменьшение ограничении в использовании портативной техникой (телефоны, точки доступа интернет, специальное медицинское оборудование) для пассажиров.

- улучшение тактико-технических показателей ЛА таких как: уменьшение ЭМИ от бортового оборудования установленном на ЛА, уменьшение массы вследствии уменьшения экранов и защитных экранов по результатам моделирования ЭМС, повышение радиоэлектронной защищённости ЛА от внешних воздействий естественного и техногенного характера (молнии, РЛС, ЭМИ оружие), переход от металлических деталей планера (естественных экранов) к композитным материалам без снижения ЭМ защиты.

СПИСОК ЛИТЕРАТУРЫ:

1. Князев, А.Д. Конструирование радиоэлектронной и электронно--вычислительной аппаратуры с учетом электромагнитной совместимости /А.Д. Князев, Л.Н. Кечиев, Б.В. Петров. - М.: Радио и связь, 1989. 224 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2. ОСТ В1 02760-95.

3. Standard Details on SAE ARP5583, Guide to Certification of Aircraft in a High IntensityRadiated Field (HIRF) Environment. http:// engineeringstandards.globalspec.com/ engineering-search/engineeringstandards/abstract/64422853172

ACTUAL PROBLEMS OF ENSURING RESISTANCE OF CRITICAL ONBOARD EQUIPMENT TO THE EMI AT THE STAGE OF EXPERIMENTAL DESIGN DEVELOPMENT

© 2014 E.Yu. Petryakov Ulyanovsk Branch CB JSC "Tupolev"

In article application of a virtual method of the analysis the electromagnetic compatibility when carrying out experimental design development of Tu-204 aircraft is considered. The concept of development of onboard cable network within a full cycle of experimental design development of aircraft is considered. The example of virtual modeling the influence of high intensity electromagnetic fields according to KT-160D on electro plaits is given.

Key words: electromagnetic compatibility, virtual modeling, aircraft, protection

Evgeniy Petryakov, Design Engineer. E-mail: ehix@narod.ru

1544