Научная статья на тему 'Активация пеноникеля как токоотвода для использования в суперконденсаторах'

Активация пеноникеля как токоотвода для использования в суперконденсаторах Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
55
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПіНОНіКЕЛЬ / ПИТОМА єМНіСТЬ / СУПЕРКОНДЕНСАТОР / ТРАВЛіННЯ / ЩАВЛЕВА КИСЛОТА / СОЛЯНА КИСЛОТА / СТРУМОВіДВОД / NICKEL FOAM / SPECIFIC CAPACITY / SUPERCAPACITOR / ETCHING / OXALIC ACID / HYDROCHLORIC ACID / CURRENT COLLECTOR

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Kovalenko V., Kotok V., Kovalenko I.

Пеноникель широко используется как токоотвод и основы гидроксидноникелевого фарадеевского электрода гибридных суперконденсаторов. Активация пеноникеля позволит увеличить емкость гидроксидноникелевого электрода или сформировать высокоскоростные электроды без нанесения дополнительной активной массы. Для активации пеноникеля предложена многократная (1 20 раз) кратковременная (5 мин) обработка в 0,1 М растворе HCl, H3BO3 или H2C2O4. Изучена возможности активации коммерческих образцов пеноникеля производства «Новомет-Пермь» (Российская Федерация) и «Linyi Gelon LIB Co Ltd» (Китай). Активированные и неактивированные образцы пеноникеля изучены методами рентгенофазового анализа и сканирующей электронной микроскопии, электрохимические характеристики определены циклической вольтамперометрией и гальваностатическим зарядно-разрядным циклированием в режиме суперконденсатора. Сравнительный анализ образцов пеноникеля китайского и российского производства показал значительную пассивность и сложность активации пеноникеля китайского производства. Высказано предположение, что высокая пассивность определяется тем, что образец состоит из сплава Ni-P или Ni-B. Максимальная удельная емкость 0,084 Ф/см2 получена при 20-ти кратной обработке в растворе HCl. Механизм активации увеличение удельной активной поверхности никеля. Однако это значение ниже удельной емкости неактивированного пеноникеля российского производства (0,333 Ф/см2). Показано, что пеноникель российского производства легко активируется Максимальный активационный эффект проявляется при обработке в растворе щавелевой кислоты: удельные емкости составили 1,213 Ф/см2 (при однократной обработке), 6,578 Ф/см2 (при пятикратной обработке) и 20,003 Ф/см2 (при двадцатикратной обработке). Механизм активации образование на поверхности пеноникеля слоя оксалата никеля. По результатам сравнительного анализа показана эффективность активации пеноникеля российского образца путем многократной кратковременной обработки в растворе щавелевой кислоты. Сделан вывод о неэффективности активации образца пеноникеля китайского производства методом многократной кратковременной обработки в растворах соляной, борной и щавелевой кислоты. Для активации пеноникеля китайского производства необходимо разработка иного метода

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Activation of the nickel foam as a current collector for application in supercapacitors

Nickel foam is widely used as a current collector and as a major component of the faradic electrode in supercapacitors. Activation of nickel foam would allow increasing the capacity of the nickel hydroxide electrode or preparing high-speed electrodes without additional active material. Multiple (1 20 times) short-term (5 min) treatment in a 1 М solution of HCl, H3BO3 or H2C2O4 has been proposed. The possibilities of activation of commercial nickel foam samples manufactured by “Novoment-Perm” (Russian Federation) and “Linyi Gelon LIB Co Ltd” (China) have been studied. Activated and non-activated nickel foam samples have been studied by means of X-ray diffraction analysis and scanning electron microscopy, electrochemical characteristics were determined by means of cyclic voltamperometry and galvanostatic charge-discharge cycling in the supercapacitor regime. The comparative analysis of nickel foam samples from Chinese and Russain manufacturers has revealed very low reactivity and low susceptibility to activation of nickel foam from Chinese manufacturer. An assumption has been made that low reactivity is because the sample is composed of Ni-P or Ni-B alloy. The maximum specific capacity of 0.084 F/cm2 has been obtained after 20 treatments in HCl solutions. The activation mechanism is the increase in the specific surface area of nickel. However, this value is significantly lower than that of non-activated nickel foam from Russian manufacturer (0.333 F/cm2). It has been discovered that the nickel foam sample from Russian manufacturer can be easily activated. The maximum activation effect is achieved when treated with oxalic acid: specific capacities are 1.213 F/cm2 (one treatment), 6.578 F/cm2 (five treatments) and 20.003 F/cm2 (twenty treatments). The activation mechanism is the formation of nickel oxalate on the surface of nickel foam. The results of the comparative analysis have revealed the effectiveness of activation of the nickel foam sample from Russian manufacturer by multiple short-term treatment with oxalic acid. It has been concluded that activation of the nickel foam sample from Chinese manufacturer by multiple short-term treatment in solutions of hydrochloric, boric and oxalic acids is ineffective. Activation of nickel foam from Chinese manufacturer requires the development of a different method.

Текст научной работы на тему «Активация пеноникеля как токоотвода для использования в суперконденсаторах»

-□ □-

Птоткель широко використовуеться як струмо-eideod та основа гидроксидноткелевого фарадеевсько-го електроду гiбридних суперконденсаторов. Активащя тноткелю дозволить збшьшити емтсть гидроксидно-ткелевого електроду або сформувати високошвидтс-т електроди без нанесення додатковог активноi маси. Для активаци тноткелю запропонована багаторазова (1-20 раз) короткотривала (5 хв) обробка в 0,1 Мрозчи-н HCl, H3BO3 або H2C2O4. Вивчена можлив^ть активаци комерцтних зразтв тноткелю виробництва «Новомет-Пермь» (Ростська Федеращя) та «Linyi Gelon LIB Co Ltd» (Китай). Активован та неактивован зразки тнотке-ля вивчен методами ренгенофазового аналiзу та скану-ючог електронног мшроскопи, електрохiмiчнi характеристики визначен циклiчною вольтамnерометрiею та гальваностатичним зарядно-розрядним циклування в режимi суперконденсатора. Порiвняльний аналiз зраз-тв тноникелю китайського та ростського виробництва виявив суттеву пасивтсть та складтсть активаци тноткелю китайського виробництва. Висловлено припущен-ня, що висока пасивтсть визначаеться тим, що зразок складаеться iз сплаву Ni-P або Ni-B. Максимальна пито-ма емтсть 0,084 Ф/см2 отримана при 20-ти кратнт обробц в розчин HCl. Мехатзм активаци - збшьшен-ня питомог активной поверхн ткелю. Однак це значен-ня менше питомог емностi неактивованого тноткелю ростського виробництва (0,333 Ф/см2). Показано, що птоткель ростського виробництва легко активуеться. Максимальний активацтний ефект проявляеться при обробц в розчин щавлевог кислоти: питомi емностi скла-ли 1,213 Ф/см2 (при 1-но кратнт обробщ), 6,578 Ф/см2 (при 5-ти кратнш обробщ) та 20,003 Ф/см2 (при 20-ти кратнт обробщ). Мехатзм активаци - утворення на поверх-н тноткеля шару оксалату ткелю. За результатами порiвняльного аналiзу показано ефективтсть активаци тноткелю ростського зразка шляхом багаторазовог короткотермтовог обробки в розчин щавлевог кислоти. Зроблено висновок щодо неефективностi активаци зразка тноткелю китайського виробництва шляхом багатора-зовог короткотермтовог обробки врозчин щавлевог, соля-ног та борног кислоти. Для активаци тноткелю китайського виробництва необхдна розробка тшого методу

Ключовi слова: птоткель, питома емтсть, суперконденсатор, травлтня, щавлева кислота, соляна кислота, струмовидвод

-□ □-

UDC 54.057:544.653:621.13:661.13

|DOI: 10.15587/1729-4061.2018.133472|

ACTIVATION OF THE NICKEL FOAM AS A CURRENT COLLECTOR FOR APPLICATION IN SUPER-CAPACITORS

V. Kovalenko

PhD, Associate Professor* Department of Analytical Chemistry and Food Additives and Cosmetics** Е-mail: vadimchem@gmail.com V. Kotok PhD, Associate Professor* Department of Processes, Apparatus and General Chemical Technology** Е-mail: valeriykotok@gmail.com I. Kovalenko Doctor of Technical Sciences, Professor Department of Inorganic Chemistry** Е-mail: il.kovalenko050@gmail.com *Department of Technologies of Inorganic Substances and Electrochemical Manufacturing Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000 **Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

1. Introduction

Supercapacitors (SC) are modern chemical power sources (CPS). SC are widely used for starting various electric motors in electric automobiles, pump stations, electric tools and other devices. SC are also used as starter CPS for ignition of gas and diesel engines, as uninterruptible power supplies for computers, medical equipment and even buildings and premises. A characteristic feature of supercapacitors is high charge-discharge rate. As a result, the electrochemical process occurs on the surface and within a thin layer of ac-

tive material particles at the Faradic electrode. Therefore, there are special requirements [1, 2] to specific surface area, crystal structure and electrochemical activity of the active material of such electrode. Nickel oxide electrode with Ni(OH)2 as an active material is widely used as a Faradic electrode in hybrid supercapacitors. Nickel hydroxide is used on its own [3], as a nanosized [4] or ultradisperse powder [5], and as a composite with nanocarbon materials (graphene oxide [6], carbon nanotubes [7]).

Supercapacitors require highly effective current collectors, which must provide good electrical contact with

©

the active material. There are two strategies for electrode preparation: pasting of the active material onto the current collector [8, 9] and formation of the active material directly on the surface of the current collector [10, 11]. Formation of the active material on the current collector is used for the preparation of catalysts, for instance, for oxygen evolution [12] or methanol electrolysis [13], and for electrochromic devices [14, 15].

When using the basic solution as an electrolyte, the nickel foam is highly effective current collector [8]. Nickel foam is manufactured by depositing nickel (chemically or electro-chemically) onto graphite foam, which then gets burnt out. This results in the formation of the highly porous open-cell structure of nickel tubes.

The nickel foam is a perspective current collector for the nickel oxide electrode. This is because the surface of nickel is covered with a thin layer of nickel oxide, which in the basic medium transforms into electrochemically active nickel hydroxide, which would contribute to the capacity of the electrode.

However, the natural oxide layer of nickel is very thin and dense, with insignificant capacity. Thus, activation of the nickel foam surface with the formation of the highly active nickel oxide layer and increase of its capacity is a relevant problem.

2. Literature review and problem statement

Synthesis method and conditions directly define electrochemical properties of nickel hydroxide. There are various synthesis methods for the preparation of nickel hydroxide and nickel-based layered double hydroxides. Preparation of hydroxides can be achieved chemically via direct titration precipitation (addition of the basic solution to a solution of nickel salt) [16] and reverse titration (addition of nickel salt solution to a solution of base) [17, 18]. Other methods such as two-stage high-temperature synthesis [19], sol-gel [20] and homogeneous precipitation [21] are also employed.

Preparation can be achieved with electrochemical methods [22, 23] including synthesis in a slit-diaphragm elec-trolyzer [24, 25]. These methods allow for the synthesis of electrochemically active nickel hydroxide samples, however, they are not suited for the activation of the nickel foam surface because Ni(OH)2 is formed as a separate phase. At the same time, the activation requires the formation of nickel hydroxide or oxide layer directly on the surface of nickel foam.

Thin films of nickel oxide or hydroxide can be formed chemically [26], and electrochemically [27, 28]. Nickel hydroxide can be prepared electrochemically by cathodic deposition as a result of basification of the cathodic space [29, 30]. The major disadvantage of this method is insufficient adhesion to the surface of nickel foam. Nickel hydroxide film can also be prepared via anodic formation [31, 32]. During anodic polarization, the oxidation of nickel occurs, resulting in the formation of an oxide/hydroxide film [33, 34]. It should be noted that films prepared by anodic oxidation have an insufficient thickness and low porosity.

Nickel oxide film on the surface of Ni has been prepared chemically using the solvothermal method [35], head deposition [36, 37], including induction [38], and also thermal oxidation in air [39]. In this case, the nickel hydroxide film is a conversion coating (i. e. formed by conversion of the substrate material [40]) and possesses high electrochemical

activity. However, the disadvantages of these methods are high power consumption and complexity.

It should be noted, that the deposition of the oxide/ hydroxide layer is only a part of the activation process. In order to improve adhesion and increase capacity, the process of surface development by etching can be employed. The etching processes are well-studied, however the combination of etching and formation of the oxide-hydroxide layer has almost not been studied, despite their prospects.

3. The aim and objectives of the study

The aim of the work is to evaluate the effectiveness of activation of commercial nickel foam samples of various manufacturers by combining the processes of etching and formation of the active layer of nickel hydroxide.

To achieve this aim, the following objectives were set:

- to conduct activation of nickel foam samples from different manufacturers by etching multiple times in solutions of different acids;

- to study the physical and electrochemical characteristics of activated and non-activated samples;

- to conduct a comparative analysis of the sample characteristics and evaluate the possibility for activation of different nickel foam samples.

4. Materials and activation methods for nickel foam samples and study of their characteristics

4. 1. Nickel foam samples for activation

For activation, two commercial nickel foam samples were used:

1) Nickel foam manufactured by "Novomet-Perm" (Russian Federation). The sample has a thickness of 2 mm and high stiffness. The nickel foam was manufactured by chemical formation of a thin layer of nickel, followed by electrochemical deposition of a thicker layer of nickel. Sample label - R.

2) Nickel foam manufactured by "Linyi Gelon LIB Co Ltd" (China). Sample thickness is 0.3 mm and the sample has high flexibility. The sample was manufactured by chemical formation of a thin layer of nickel. Sample label - Ch.

4. 2. Activation of nickel foam samples

Activation of nickel foam samples was conducted by treating them in 1M solutions of HCl, H3BO3 and H2C2O4 for a short period multiple times. The samples were treated for 5 min, 1, 5, 10 and 20 times. After each etching, the samples were placed into a 1M Na2CO3 solution to neutralize the remaining acid. After the last cycle of etching-neutralization, the nickel foam sample was washed with distilled water and dried at 20 oC for 24 hours.

The labeling of treated samples is composed of initial labeling (R - Russian sample, Ch - Chinese sample) with the addition of acid label (Cl - HCl, Bo - H3BO3 and Ox -H2C2O4) and number of treatment times. For instance: RCl5 - Russian nickel foam activated in hydrochloric acid 5 times; Ch0x20 - Chinese nickel foam activated in oxalic acid 20 times.

4. 3. Study of characteristics of nickel foam samples

Crystal structure and crystallinity of the samples were studied by means of X-ray diffraction analysis (XRD) using

the diffractometer DRON-3 (USSR) (Co-Ka scan range 10-90° 20, scan rate 0.1°/s).

Morphology of nickel foam samples was studied using the scanning electron microscope 106 - I (SELMI, Ukraine).

Electrochemical characteristics of activated and non-activated nickel foam samples were studied by means of cyclic voltamperometry and galvanostatic charge-discharge cycling. The measurements were conducted in a special cell YSE-2 (USSR), using the digital potentiostat Ellins P-8 (Russian Federation). Nickel foam samples were used as a working electrode. Electrolyte - 6M KOH. Counter-electrode - nickel mesh, reference electrode - Ag/AgCl (KCl sat.). Cyclic voltamperogram was recorded in the potential range of 0-500 mV, scan rate 1 mV/S. Charge-discharge cycling was conducted in the supercapacitor regime at current densities of 20, 40, 80 and 120 mA/cm2 (10 cycles at each current density). Specific capacity Csp (F/cm2) was calculated from discharge curves.

5. Results of studying the influence of activation on characteristics of nickel foam samples

Fig. 1 shows XRD patterns of Ch and R samples prior to activation. The results reveal that both samples are primarily pure nickel, however, it should be noted that the crystallinity of the Chinese sample (sample Ch) is higher than that of the Russian sample (sample R): the crystallite size, calculated from the first peak, is 1143 A and 953 A, respectively. The XRD patterns of activated samples do not differ from the ones of initial samples

that of R. 20-times treatment in hydrochloric acid (sample RC20) resulted in the partial dissolution of the nickel foam surface. The SEM images of R0x20 sample revealed that 20-times resulted in the formation of nickel oxalate on the surface of nickel foam.

Fig. 1. XRD patterns of nickel foam samples prior to activation: a - sample R, b - sample Ch

Fig. 2 shows SEM images of different samples. It should be noted that the wire diameter of Ch sample is smaller than

Fig. 2. SEM images of nickel foam samples: a - Ch; b - R; c - RC20; d- R0x20

Fig. 3 shows cyclic voltamperometry curves and Fig. 4 shows specific capacities of different nickel foam samples. It should be noted that treatment of Chinese nickel foam in oxalic, boric and hydrochloric acid (for a small number of times) results in almost no activating effect. Potentials and specific currents of discharge peaks (Fig. 3) show almost no difference from initial samples. Only 20-times etching in hydrochloric acid results in activation.

a

b

Fig. 3. Cyclic voltamperograms of nickel foam samples: a — ChC5; b — ChC20; c — ChOx5; d — Ch0x20; e — Ch

Full Discharge

s 25

to

20

o 15

10

5

0

5.523

-

2.290

0.178 0.296 0.098 0.108 _ 0.186 0.229 0.104 1 0.079 0.136 0.139 0.172

-f T v v v

m a

Pi m

Discharge to E=0 V

20.003

1

n „,0.654 0.333 0.4 ,1.213 3/ ■ 0.059 0.084 0.048 ■ 0.029 0.036 0.020 0 069

- "" T " \ I ■ —, —, ---— r —

Pi Pi

b

Fig. 4. Specific capacities of different nickel foam samples, F/g: a — full discharge; b — discharge to 0V potential

It should be noted that non-activated Russian and Chinese nickel foam samples show fundamentally different electrochemical properties: specific capacities at a discharge to E=0 V are 0.029 F/cm2 and 0.333 F/cm2 for samples Ch and R, respectively. Treatment of Chinese nickel foam samples only marginally increased specific capacity. The strongest effect was observed from etching in hydrochloric acid. The Russian nickel foam sample was more susceptible to activation. The strongest effect was observed from activation in oxalic acid. With 1-time (sample ROx1), 5-times (sample ROx5) and 20-times etching in oxalic acid (sample R0x20), the specific capacities are 1.213 F/cm2, 6.578 F/cm2 and 20.003 F/cm2, respectively. These data indicated a significant activation of Russian nickel foam after multiple times treatment in oxalic acid solution.

6. Discussion of results of studying the influence of activation on characteristics of nickel foam samples

A hypothesis was proposed regarding possible activation mechanisms for treatment in solutions of hydrochloric, boric and oxalic acids. Etching in hydrochloric acid can result in an increase of specific surface area, which should result in the increased specific capacity. During treatment in solutions of weak acids (boric and oxalic), there is a possibility for weakly-soluble nickel borate and nickel oxalate to form. With further submersion of nickel sample into the basic solution, the conversion of borate (oxalate) to electrochemically

b

a

c

e

a

active nickel hydroxide would occur. The following discussion is based on this hypothesis.

Feature study of nickel foam samples from different manufacturers. The results of X-ray diffraction analysis (Fig. 1) have revealed that nickel foam from Russian manufacturer (sample P) has lower crystallinity than nickel foam from Chinese manufacturer (sample Ch). The nickel foam from Chinese manufacturer is produced by chemical deposition by reduction with sodium hypophosphite or sodium boro-hydride. As a result, not pure Ni but Ni-P or Ni-B alloy is formed. The reflexes of Ni-P and Ni-B alloys are not observed on the XRD pattern (Fig. 1, b), because of a small content of the dopant, making it indistinguishable from the crystal lattice of pure nickel.

Influence of activation on the surface of nickel foam. The XRD analysis for activated samples had been conducted, however, no differences from initial samples were observed. This is explained by a small thickness of the formed layers. The SEM images support the proposed hypothesis about activation mechanisms of nickel foam. The surface of sample RC20, treated in hydrochloric acid shows partial dissolution (Fig. 2, c). The insignificant dissolution is explained by the chemical stability of nickel towards acids. Formation of nickel oxalate has been observed on the surface of sample R0x20 (Fig. 2, d). This layer is a conversion layer, which resulted in the reaction between nickel oxide and oxalic acid.

Influence of activation on electrochemical characteristics of nickel foam samples.

Activation of nickel foam samples from Chinese manufacturer. The obtained data during the study of electrochemical characteristics indicate low reactivity of Chinese nickel foam. The specific capacity of initial Ch samples is 11.4 times lower than that of the sample R. This is explained by a thin and dense nickel oxide layer, on the surface of Ni-P and Ni-B alloys (which constitute Chinese nickel foam). Activation of Chinese nickel foam in solutions of hydrochloric, boric and oxalic acids further confirms its low reactivity. Increasing the number of treating times leads to an increase in capacity for all samples. The biggest effect resulted from multiple treatments in hydrochloric acid. Thus, for Chinese nickel foam, the activation factor was the increase of specific surface area resulted in surface etching. The higher capacity was obtained for the sample ChC20 - 0.084 F/cm2 (discharge to E=0 B) and 0.229 F/cm2 (full discharge). However, these values are comparable to the non-activated sample from Russian manufacturer. It should be noted that maximum specific capacities for activated Chinese nickel foam samples are more than 25 times lower than capacities cited in the literature [31]. In general, it can be said that activation of Chinese nickel foam by multiple short-term treatment in solutions of hydrochloric, boric and oxalic acids proved to be ineffective.

Activation of nickel foam samples from Russian manufacturer. Nickel foam from Russian manufacturer was more susceptible to activation. The comparative analysis (Fig. 4, b) has revealed that the activation effect of acids increases in the series "boric - hydrochloric - oxalic". It should be noted, that one-time treatment in oxalic acid resulted in higher capacity (sample ROx1 - 1.213 F/cm2) than 5-times treatment in hydrochloric acid (sample RC5 - 0.2654 F/cm2). The highest

activation effect was achieved after 20-times treatment in a solution of oxalic acid: the specific capacity has increased more than 60 times, from 0.333 F/cm2 (sample R) to 20.003 (sample R0x20). Comparison of the obtained data with other published papers is complicated, because other papers cite specific capacities of nickel hydroxide or films in Farads per gram [32, 35-37]. However, when conducting this research, the change in the mass of nickel foam samples was lower than the sensitivity of analytical scales (0.0001 g), which did not allow for the calculation of such value. However, some papers present spatial specific capacities. The papers [31, 38] state that after anodic treatment of nickel foil, a layer of nickel hydroxide with a specific surface capacity of 3.2-4.5 F/cm2 was formed. It was also stated that this value is high and allows this coating to be used in supercapacitors. It should be noted, that the nickel foam sample from Russian manufacturer treated 20 times in oxalic acid demonstrated the specific surface capacity of 20.003 F/cm2. This is 4.44 higher than the value presented in the literature [31, 38]. It should be noted that for nickel foam from Russian manufacturer, the activation mechanism is the formation of a weakly-soluble salt, when it is treated multiple times for short duration. For oxalic acid treatment, the nickel oxalate is formed, which transforms into electrochemically active nickel hydroxide in the working electrolyte.

7. Conclusions

1. Nickel foam samples from "Novomet-Perm" (Russian Federation) and "Linyi Gelon LIB Co Ltd" (China) have been activated by multiple treatments (1, 2, 5, 10 and 20 times) for short time (5 min) in 1M solutions of hydrochloric, oxalic and boric acids. Physical and electrochemical characteristics of activated and non-activated samples have been studied.

2. The comparative analysis has revealed low reactivity of nickel foam from Chinese manufacturer, owing to its manufacturing method and composition (Ni-P or Ni-B alloy). The specific capacity of non-activated nickel foam sample was 0.029 F/cm2, which is 11.5 times lower than the specific capacity of non-activated nickel foam samples from Russian manufacturer (0.333 F/cm2). The low effectiveness of multiple short-term treatment of nickel foam from Chinese manufacturer in solutions of hydrochloric, boric and oxalic acids has been discovered. The maximum specific capacity of Chinese nickel foam has been achieved after treatment in hydrochloric acid for 20 times and is 0.084 F/cm2. The main activation mechanism is the increase in the specific surface area of nickel foam. It is concluded, that activation of nickel foam from Chinese manufacturer requires the development of a different activation method.

3. The results of the comparative analysis have revealed the effectiveness of activation by multiple short-term treatment in a solution of oxalic acid for the nickel foam sample from Russian manufacturer. The maximum specific capacities are 1.213 F/cm2 (one treatment), 6.578 F/cm2 (treated 5 times) and 20.003 F/cm2 (treated 20 times). The activation mechanism has been determined, which is the formation of the nickel oxalate layer of the surface of nickel foam.

References

1. Simon P., Gogotsi Y. Materials for electrochemical capacitors // Nature Materials. 2008. Vol. 7, Issue 11. P. 845-854. doi: 10.1038/ nmat2297

2. Burke A. R&D considerations for the performance and application of electrochemical capacitors // Electrochimica Acta. 2007. Vol. 53, Issue 3. P. 1083-1091. doi: 10.1016/j.electacta.2007.01.011

3. Asymmetric supercapacitors based on stabilized a-Ni(OH)2 and activated carbon / Lang J.-W., Kong L.-B., Liu M., Luo Y.-C., Kang L. // Journal of Solid State Electrochemistry. 2009. Vol. 14, Issue 8. P. 1533-1539. doi: 10.1007/s10008-009-0984-1

4. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors / Lang J.-W., Kong L.-B., Wu W.-J., Liu M., Luo, Y.-C., Kang L. // Journal of Solid State Electrochemistry. 2008. Vol. 13, Issue 2. P. 333-340. doi: 10.1007/s10008-008-0560-0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

5. Electrochemical preparation of a-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors / Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. // Journal of Solid State Electrochemistry. 2014. Vol. 18, Issue 6. P. 1569-1584. doi: 10.1007/ s10008-014-2381-7

6. Excellent supercapacitive performance of a reduced graphene oxide/Ni(OH)2 composite synthesized by a facile hydrothermal route / Zheng C., Liu X., Chen Z., Wu Z., Fang D. // Journal of Central South University. 2014. Vol. 21, Issue 7. P. 2596-2603. doi: 10.1007/s11771-014-2218-7

7. Hierarchical NiAl Layered Double Hydroxide/Multiwalled Carbon Nanotube/Nickel Foam Electrodes with Excellent Pseudocapacitive Properties / Wang B., Williams G. R., Chang Z., Jiang M., Liu J., Lei X., Sun X. // ACS Applied Materials & Interfaces. 2014. Vol. 6, Issue 18. P. 16304-16311. doi: 10.1021/am504530e

8. Kotok V., Kovalenko V. Optimization of nickel hydroxide electrode of the hybrid supercapacitor // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 4-9. doi: 10.15587/1729-4061.2017.90810

9. Kovalenko V., Kotok V. Definition of effectiveness of p-Ni(OH)2 application in the alkaline secondary cells and hybrid supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 6 (89). P. 17-22. doi: 10.15587/17294061.2017.110390

10. Ni(OH)2-NiO-NiF Compound Film on Nickel with Superior Pseudocapacitive Performance Prepared by Anodization and Post-hydrothermal Treatment Methods / Chen M., Xiong X., Yi C., Ma J., Zeng X. // Journal of Inorganic and Organometallic Polymers and Materials. 2014. Vol. 25, Issue 4. P. 739-746. doi: 10.1007/s10904-014-0152-7

11. Kotok V., Kovalenko V. The properties investigation of the faradaic supercapacitor electrode formed on foamed nickel substrate with polyvinyl alcohol using // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 12 (88). P. 31-37. doi: 10.15587/1729-4061.2017.108839

12. Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting / Yu X., Hua T., Liu X., Yan Z., Xu P., Du P. // ACS Applied Materials & Interfaces. 2014. Vol. 6, Issue 17. P. 15395-15402. doi: 10.1021/ am503938c

13. Electrochemical formation of multilayered NiO film/Ni foam as a high-efficient anode for methanol electrolysis / Xiao J., Zhang X., Gao T., Zhou C., Xiao D. // Journal of Solid State Electrochemistry. 2017. Vol. 21, Issue 8. P. 2301-2311. doi: 10.1007/ s10008-017-3570-y

14. Kotok V., Kovalenko V. The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 11 (86). P. 28-34. doi: 10.15587/1729-4061.2017.97371

15. Kotok V., Kovalenko V. Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 12. P. 38-43. doi: 10.15587/1729-4061.2017.103010

16. Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods / Solovov V., Kovalenko V., Nikolenko N., Kotok V., Vlasova E. // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 1, Issue 6 (85). P. 16-22. doi: 10.15587/1729-4061.2017.90873

17. Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe3+ and CO2 / Liu C., Huang L., Li Y., Sun D. // Ionics. 2009. Vol. 16, Issue 3. P. 215-219. doi: 10.1007/s11581-009-0383-8

18. A facile approach to synthesis coral-like nanoporous p-Ni(OH)2 and its supercapacitor application / Li J., Luo F., Tian X., Lei Y., Yuan H., Xiao D. // Journal of Power Sources. 2013. Vol. 243. P. 721-727. doi: 10.1016/j.jpowsour.2013.05.172

19. Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications / Kovalenko V. L., Kotok V. A., Sykchin A. A., Mudryi I. A., Ananchenko B. A., Burkov A. A. et. al. // Journal of Solid State Electrochemistry. 2016. Vol. 21, Issue 3. P. 683-691. doi: 10.1007/s10008-016-3405-2

20. Xiao-yan G., Jian-cheng D. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes // Materials Letters. 2007. Vol. 61, Issue 3. P. 621-625. doi: 10.1016/j.matlet.2006.05.026

21. Kovalenko V., Kotok V. Study of the influence of the template concentration under homogeneous precepitation on the properties of Ni(OH)2 for supercapacitors // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 4, Issue 6 (88). P. 17-22. doi: 10.15587/1729-4061.2017.106813

22. Supercapacitive behavior of p-Ni(OH)2 nanospheres prepared by a facile electrochemical method / Tizfahm J., Safibonab B., Aghazadeh M., Majdabadi A., Sabour B., Dalvand S. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. Vol. 443. P. 544-551. doi: 10.1016/j.colsurfa.2013.12.024

23. Aghazadeh M., Golikand A. N., Ghaemi M. Synthesis, characterization, and electrochemical properties of ultrafine p-Ni(OH)2 nanoparticles // International Journal of Hydrogen Energy. 2011. Vol. 36, Issue 14. P. 8674-8679. doi: 10.1016/j.ijhydene.2011.03.144

24. Kovalenko V., Kotok V. Obtaining of Ni-Al layered double hydroxide by slit diaphragm electrolyzer // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 6 (86). P. 11-17. doi: 10.15587/1729-4061.2017.95699

25. Kovalenko V., Kotok V., Bolotin O. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for super-capacitors // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 6 (83). P. 17-22. doi: 10.15587/17294061.2016.79406

26. Nickel hydroxides and related materials: a review of their structures, synthesis and properties / Hall D. S., Lockwood D. J., Bock C., MacDougall B. R. // Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. Vol. 471, Issue 2174. P. 20140792-20140792. doi: 10.1098/rspa.2014.0792

27. Liang K., Tang X., Hu W. High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode // Journal of Materials Chemistry. 2012. Vol. 22, Issue 22. P. 11062. doi: 10.1039/c2jm31526b

28. Electrochemical supercapacitor development based on electrodeposited nickel oxide film / Navale S. T., Mali V. V., Pawar S. A., Mane R. S., Naushad M., Stadler F. J., Patil V. B. // RSC Advances. 2015. Vol. 5, Issue 64. P. 51961-51965. doi: 10.1039/c5ra07953e

29. Kotok V., Kovalenko V. A study of multilayered electrochromic platings based on nickel and cobalt hydroxides // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 12 (91). P. 29-35. doi: 10.15587/1729-4061.2018.121679

30. Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis / Kotok V. A., Kovalenko V. L., Kovalenko P. V., Solovov V. A., Deabate S., Mehdi A. et. al. // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12, Issue 13. P. 3962-3977.

31. Fabrication of Nickel-Based Composite Film Electrode for Supercapacitors by a New Method of Anodization/GCD / C. Yi, X.-B. Xiong, Z.-B. Zou, J.-J. LI, T. Huang, B. Li // Acta Physico-Chimica Sinica. 2015. Vol. 31, Issue 1. P. 99-104(6).

32. Anodic electrodeposition of a porous nickel oxide-hydroxide film on passivated nickel foam for supercapacitors / Gu L., Wang Y., Lu R., Guan L., Peng X., Sha J. // J. Mater. Chem. A. 2014. Vol. 2, Issue 20. P. 7161-7164. doi: 10.1039/c4ta00205a

33. Visscher W., Barendrecht E. The anodic oxidation of nickel in alkaline solution // Electrochimica Acta. 1980. Vol. 25, Issue 5. P. 651-655. doi: 10.1016/0013-4686(80)87072-1

34. Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling / Seghiouer A., Chevalet J., Barhoun A., Lantelme F. // Journal of Electroanalytical Chemistry. 1998. Vol. 442, Issue 1-2. P. 113-123. doi: 10.1016/s0022-0728(97)00498-1

35. Electrochromo-supercapacitor based on direct growth of NiO nanoparticles / Cai G., Wang X., Cui M., Darmawan P., Wang J., Eh A. L.-S., Lee P. S. // Nano Energy. 2015. Vol. 12. P. 258-267. doi: 10.1016/j.nanoen.2014.12.031

36. The Formation of Free Standing NiO Nanostructures on Nickel Foam for Supercapacitors / Atalay F. E., Aydogmus E., Yigit H., Avcu D., Kaya H., Atalay S. // Acta Physica Polonica A. 2014. Vol. 125, Issue 2. P. 224-226. doi: 10.12693/aphyspola.125.224

37. Yadav A. A., Chavan U. J. Influence of substrate temperature on electrochemical supercapacitive performance of spray deposited nickel oxide thin films // Journal of Electroanalytical Chemistry. 2016. Vol. 782. P. 36-42. doi: 10.1016/j.jelechem.2016.10.006

38. Fabrication of porous nickel (hydr)oxide film with rational pore size distribution on nickel foam by induction heating deposition for high-performance supercapacitors / Xiong X., Zhang J., Ma J., Zeng X., Qian H., Li Y. // Materials Chemistry and Physics. 2016. Vol. 181. P. 1-6. doi: 10.1016/j.matchemphys.2016.06.038

39. Fares M., Debili M. Y. NiO Formation by Simple Air Oxidation of Nickel Coated Carbon Fibers // Journal of Advanced Microscopy Research. 2016. Vol. 11, Issue 2. P. 127-129. doi: 10.1166/jamr.2016.1302

40. Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis / Vlasova E., Kovalen-ko V., Kotok V., Vlasov S. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 5 (83). P. 33-39. doi: 10.15587/1729-4061.2016.79559

i Надоели баннеры? Вы всегда можете отключить рекламу.