Научная статья на тему 'ADAPTATION TO INTERMITTENT HYPOXIA: DYNAMICS OF BLOOD OXYGEN SATURATION AND SOME HEMATOLOGICAL PARAMETERS'

ADAPTATION TO INTERMITTENT HYPOXIA: DYNAMICS OF BLOOD OXYGEN SATURATION AND SOME HEMATOLOGICAL PARAMETERS Текст научной статьи по специальности «Клиническая медицина»

CC BY
72
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Extreme medicine
ВАК
Область наук
Ключевые слова
intermittent hypoxic training / blood oxygen saturation / erythropoietin / hemoglobin / red blood cells / reticulocytes / arterial blood pressure / интервальные гипоксические тренировки / насыщение крови кислородом / эритропоэтин / гемоглобин / эритроциты / ретикулоциты / артериальное давление

Аннотация научной статьи по клинической медицине, автор научной работы — Katuntsev V.P., Zakharov S.Yu., Sukhostavtseva T.V., Puchkova A.A.

Adaptation to hypoxia is an important object of medical research. The aim of this study was to investigate the dynamics of blood oxygen saturation (SpO2), arterial blood pressure (BP), red blood cells, reticulocytes, hemoglobin and erythropoietin (EPO) concentrations during intermittent hypoxic training (IHT). The study was conducted in 11 healthy male volunteers; 2 regimens were tested: 11 and 14 days of IHT at FIO2 = 9%. Exposure to the hypoxic gas mixture caused a reduction in SpO2 by an average of 20.4% (p < 0.05), a 22% increase in the heart rate (p < 0.05) and a 4.5% decrease in diastolic BP (p < 0.05) relative to the initial levels. After 11 days of IHT training, the reticulocyte count was increased by 16.6% (p < 0.05), and there was a distinct tendency to elevated red blood cells (p > 0.05) and hemoglobin (p > 0.05). EPO concentrations declined by 44.2% (p < 0.05) relative to the initial level. Extending the regimen to 14 days resulted in a 3.9% increase in red blood cell count (p < 0.05) and a 4.7% elevation of hemoglobin concentrations (p < 0.05), accompanied by the recovery of the initial reticulocyte count. The applied 2-week IHT regimen resulted in the increased red blood cell count and elevated hemoglobin, suggesting an improvement in the oxygen-carrying capacity of the blood. The proposed regimen can be used to improve physical performance of individuals working in extreme environmental conditions.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АДАПТАЦИЯ К ИНТЕРВАЛЬНОЙ ГИПОКСИИ: ДИНАМИКА НАСЫЩЕНИЯ КРОВИ КИСЛОРОДОМ И НЕКОТОРЫХ ГЕМАТОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ

Адаптация к гипоксии является одной из актуальных проблем медицины. Целью работы было изучить динамику насыщения крови кислородом (SpO2), артериального давления (АД), показателей красного ростка крови и уровня эритропоэтина (Эпо) в процессе интервальных гипоксических тренировок (ИГТ). При участии 11 мужчин-добровольцев проведено две серии исследований с 11и 14-суточным курсом ИГТ при FIO2 = 9%. Дыхание воздухом с пониженным PO2 приводило к уменьшению SpO2 в среднем на 20,4% (p < 0,05), увеличению частоты сердечных сокращений на 22% (p < 0,05) и снижению диастолического АД на 4,5% (p < 0,05) по отношению к исходным значениям. После 11-суточного курса ИГТ наблюдали увеличение в крови числа ретикулоцитов на 16,6% (p < 0,05), тенденцию к увеличению числа эритроцитов (p > 0,05) и содержания гемоглобина (p > 0,05). Уровень Эпо по сравнению с исходной величиной снижался на 44,2% (p < 0,05). Увеличение курса ИГТ до 14 суток привело к повышению числа эритроцитов на 3,9% (p < 0,05) и содержания гемоглобина на 4,7% (p < 0,05), что сопровождалось уменьшением числа ретикулоцитов до исходного уровня. Двухнедельный курс ИГТ приводит к увеличению в крови числа эритроцитов и содержания гемоглобина, что указывает на повышение кислородной емкости крови. Разработанный протокол ИГТ может быть использован при подготовке специального контингента лиц к работам с повышенной физической нагрузкой в экстремальных условиях окружающей среды.

Текст научной работы на тему «ADAPTATION TO INTERMITTENT HYPOXIA: DYNAMICS OF BLOOD OXYGEN SATURATION AND SOME HEMATOLOGICAL PARAMETERS»

ADAPTATION TO INTERMITTENT HYPOXIA: DYNAMICS OF BLOOD OXYGEN SATURATION AND SOME HEMATOLOGICAL PARAMETERS

Katuntsev VP Zakharov SYu, Sukhostavtseva TV, Puchkova AA A.I. Burnazyan Federal Medical Biophysical Center, Moscow, Russia

Adaptation to hypoxia is an important object of medical research. The aim of this study was to investigate the dynamics of blood oxygen saturation (SpO2), arterial blood pressure (BP), red blood cells, reticulocytes, hemoglobin and erythropoietin (EPO) concentrations during intermittent hypoxic training (IHT). The study was conducted in 11 healthy male volunteers; 2 regimens were tested: 11 and 14 days of IHT at FO2 = 9%. Exposure to the hypoxic gas mixture caused a reduction in SpO2 by an average of 20.4% (p < 0.05), a 22% increase in the heart rate (p < 0.05) and a 4.5% decrease in diastolic BP (p < 0.05) relative to the initial levels. After 11 days of IHT training, the reticulocyte count was increased by 16.6% (p < 0.05), and there was a distinct tendency to elevated red blood cells (p > 0.05) and hemoglobin (p > 0.05). EPO concentrations declined by 44.2% (p < 0.05) relative to the initial level. Extending the regimen to 14 days resulted in a 3.9% increase in red blood cell count (p < 0.05) and a 4.7% elevation of hemoglobin concentrations (p < 0.05), accompanied by the recovery of the initial reticulocyte count. The applied 2-week IHT regimen resulted in the increased red blood cell count and elevated hemoglobin, suggesting an improvement in the oxygen-carrying capacity of the blood. The proposed regimen can be used to improve physical performance of individuals working in extreme environmental conditions.

Keywords: intermittent hypoxic training, blood oxygen saturation, erythropoietin, hemoglobin, red blood cells, reticulocytes, arterial blood pressure. Funding: the study was carried out under the State Assignment for FMBA, with no additional funding. Acknowledgements: the authors thank all volunteers who participated in this study.

Author contribution: Katuntsev VP conceived and designed the study, wrote the manuscript; Zakharov SYu, Sukhostavtseva TV, Puchkova AA collected and analyzed the obtained data; Sukhostavtseva TV performed statistical analysis; Zakharov SYu, Sukhostavtseva TV edited the manuscript.

Compliance with ethical standards: the study was approved by the Ethics Committee of Federal Research Clinical Center of FMBA (Protocol № 1 dated February 7, 2019) and conformed with the principles of biomedical ethics laid out in the Declaration of Helsinki (the 1964 version and subsequent updates); voluntary informed consent was obtained from each study participant.

[23 Correspondence should be addressed: Vladimir P Katuntsev Dyshinskaya, 14, kv. 82, Moscow, 111024; vpkat@yandex.ru

Received: 07.09.2020 Accepted: 17.11.2020 Published online: 29.11.2020

DOI: 10.47183/mes.2020.019

АДАПТАЦИЯ К ИНТЕРВАЛЬНОЙ ГИПОКСИИ: ДИНАМИКА НАСЫЩЕНИЯ КРОВИ КИСЛОРОДОМ И НЕКОТОРЫХ ГЕМАТОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ

В. П. Катунцев С. Ю. Захаров, Т. В. Сухоставцева, А. А. Пучкова

Федеральный медицинский биофизический центр имени А. И. Бурназяна, Москва, Россия

Адаптация к гипоксии является одной из актуальных проблем медицины. Целью работы было изучить динамику насыщения крови кислородом (Эр02), артериального давления (АД), показателей красного ростка крови и уровня эритропоэтина (Эпо) в процессе интервальных гипоксических тренировок (ИГТ). При участии 11 мужчин-добровольцев проведено две серии исследований с 11- и 14-суточным курсом ИГТ при Р02 = 9%. Дыхание воздухом с пониженным Р02 приводило к уменьшению Эр02 в среднем на 20,4% (р < 0,05), увеличению частоты сердечных сокращений на 22% (р < 0,05) и снижению диастолического АД на 4,5% (р < 0,05) по отношению к исходным значениям. После 11-суточного курса ИГТ наблюдали увеличение в крови числа ретикулоцитов на 16,6% (р < 0,05), тенденцию к увеличению числа эритроцитов (р > 0,05) и содержания гемоглобина (р > 0,05). Уровень Эпо по сравнению с исходной величиной снижался на 44,2% (р < 0,05). Увеличение курса ИГТ до 14 суток привело к повышению числа эритроцитов на 3,9% (р < 0,05) и содержания гемоглобина на 4,7% (р < 0,05), что сопровождалось уменьшением числа ретикулоцитов до исходного уровня. Двухнедельный курс ИГТ приводит к увеличению в крови числа эритроцитов и содержания гемоглобина, что указывает на повышение кислородной емкости крови. Разработанный протокол ИГТ может быть использован при подготовке специального контингента лиц к работам с повышенной физической нагрузкой в экстремальных условиях окружающей среды.

Ключевые слова: интервальные гипоксические тренировки, насыщение крови кислородом, эритропоэтин, гемоглобин, эритроциты, ретикулоциты, артериальное давление.

Финансирование: работа выполнена в рамках гос. задания ФМБА России без дополнительного финансирования.

Благодарности: авторы выражают благодарность всем добровольцам, принимавшим участие в проведении исследований в качестве обследуемых лиц.

Вклад авторов: В. П. Катунцев — концепция и дизайн исследования; С. Ю. Захаров, Т. В. Сухоставцева, А. А. Пучкова — сбор и обработка материала; Т. В. Сухоставцева — статистическая обработка; В. П. Катунцев — написание текста; С. Ю. Захаров, Т. В. Сухоставцева — редактирование.

Соблюдение этических стандартов: исследование одобрено этическим комитетом по биомедицинской этике ФНКЦ ФМБА России (протокол № 1 от 7 февраля 2019 г.), проведено в соответствии с принципами биомедицинской этики, сформулированными в Хельсинской декларации 1964 г. и ее последующих обновлениях; каждый участник исследования подписал добровольное информированное согласие на участие в исследовании.

Для корреспонденции: Владимир Петрович Катунцев

ул. Душинская, д. 14, кв. 82, г. Москва, 111024; vpkat@yandex.ru

Статья получена: 07.09.2020 Статья принята к печати: 17.11.2020 Опубликована онлайн: 29.11.2020 DOI: 10.471837mes.2020.019

Exploring the impact of the reduced partial pressure of oxygen (PO2), i.e. hypoxic hypoxia, on the human body is an important area of medical research. Depending on the degree

of environmental P02 reduction, hypoxia can either provoke pathology or exert a revitalizing effect [1-10]. The studies by Felix Z. Meerson generated a vast array of data suggesting that

adaptive hypoxic training could improve overall endurance and tolerance of hypoxia or other harsh environmental conditions, including extreme cold and physical strain; Meerson's works provided a rationale for his concept of cross adaptation, the general mechanism of adaptation and prophylaxis [11, 12].

Success in decoding the molecular mechanism of oxygen homeostasis has become one of the major advances in biology made in the last 3 decades. The key regulators of oxygen homeostasis are hypoxia-inducible factors (HIFs) [13], of which HIF-1 is highly crucial and well-studied. HIF-1 is a heterodimer composed of an oxygen-dependent subunit HIF-1 a and a structural subunit HIF-1 p. The concentration and stability of HIF-1 a and its transcriptional activity are directly dependent on P02 in the cell [14, 15]. Under reduced P02, HIF-1 a initiates a cascade of gene-mediated cellular and systemic reactions conducive to delivering enough oxygen to tissues and subsequent oxygen uptake. HIF-1 and HIF-2 stimulate production of erythropoietin (EPO) by the kidneys. EPO is a hormone that regulates production of red blood cells in the bone marrow [16]; in turn, red blood cells carry oxygen from the lungs to other tissues.

This theoretical thesis is in good agreement with the experimental data demonstrating that long exposure to an altitude > 2,200 m leads to an increase in serum EPO concentrations [17] and altitude acclimatization is characterized by polycythemia, elevated hemoglobin and increased oxygen-carrying capacity of the blood [1, 3, 18-20]. However, the associations between EPO levels, hematological parameters of red blood cells and physiological effects of hypoxia may not always be very pronounced in intermittent hypoxic training (IHT), which is used to stimulate adaptation to hypoxia. For example, no increase in EPO concentrations, hematological parameters of red blood cells or improved endurance performance were observed in distance runners undergoing a 4-week normobaric IHT program (5 min of normoxia followed by 5 min of hypoxia, 70 min per session, 5 times a week; FIO2 = 12% at week 1, FO2 = 11% at week 2, Fp2 = 10% at weeks 3 and 4) [21]. Another study conducted in athletes found no significant differences in the hematological parameters of red blood cells and hemoglobin mass at baseline and after 4 weeks of IHT in a hypobaric chamber (3 h a day, 5 days a week, pressure equivalent to that at 4,000-5,500 m), although there was a twofold increase in EPO concentrations after exposure to the hypoxic environment [22]. Another study reported complement activation, increased phagocytic activity of neutrophils and elevated immunoglobulins in 10 healthy male volunteers undergoing a 2-week normobaric IHT program (5 min of hypoxia followed by 5 min of normoxia, 4 times a day [23]. However, the positive effects of IHT observed in the cited study were not accompanied by EPO elevation, increased erythrocyte count or heightened hemoglobin concentrations. One more publication reported the absence of changes in hematocrit and hemoglobin concentrations in 9 healthy males undergoing a

12-day normobaric IHT program (2h a day at FIO2 ~13%) [24]; however, by day 5 their reticulocyte count was elevated.

Considering that IHT is widely used in clinical, sports, aviation and space medicine [7, 8, 25-27], it is important to study its effects on the human body, the underlying mechanisms, the efficacy of different IHT regimens and approaches to their optimization [28]. The aim of this study was to investigate changes in oxygen saturation, arterial blood pressure, hematological parameters of red blood cells and EPO concentrations throughout a 2-week IHT program.

METHODS

The study was carried out on 11 apparently healthy male volunteers aged 21-32 years (the mean age was 25.3 ± 1.5 years; the mean weight, 81.5 ± 3.3 kg; the mean height, 180.4 ± 2.2 cm). The following inclusion criteria were applied: approval by the medical board and voluntary consent to participate.

IHT sessions were conducted using a Bio-Nova-204 system for hypoxic therapy (Bio-Nova; Russia) that allows delivering a hypoxic gas mixture to 2 patients at a time. During the sessions, the participants remained seated. The mixture was delivered through a mask pressed tightly against the face, in a well-ventilated room for physiological tests involving humans. The sessions were administered on a daily basis; each session lasted 60 min and consisted of 6 cycles of breathing the hypoxic gas mixture (5 min) followed by breathing ambient air (5 min). Thus, each session included six 5-minute long periods of inhaling the hypoxic has mixture, and the total duration of hypoxic exposure was 30 min. During the first IHT session, FiO2 was 10%, which corresponds to PIO2 ~76 mmHg. During the second and the remainder sessions, FIO2 was 9% (PIO2 ~68.5 mmHg). In the first part of the experiment, an 11-day regimen was applied to 5 participants; in the second part, the regimen was extended to 14 days and was administered to 6 participants.

During the sessions, the physiological and subjective responses of the participants to the inspired low-oxygen mixture were closely monitored. Systolic (SBP) and diastolic (DBP) blood pressures, SpO2 and heart rate (HR) were measured at baseline and during the inhalation of the hypoxic mixture using a PVM-2703 monitor (Nihon Kohden Corporation; Japan).

For blood tests, fasting blood samples were drawn from a basilic vein in the morning prior to commencing the program and upon completion of the first (11 days) and second (14 days) parts of the experiment. Measurements were done using an automated hematology analyzer XN-3000 (Sysmex Corporation; Japan). EPO was measured using an Immulite 2000 XPi analyzer (Siemens; Germany) before starting the 11-day regimen and upon its completion.

Prior to and after completing the extended 14-day IHT regimen, a functional test previously described in [29] was

Table 1. Oxygen saturation (SpO2), heart rate (HR), systolic (SBP) and diastolic (DBP) pressures in the participants during hypoxic gas breathing

Stage of the experiment SpO2, % HR, min-1 SBP mmHg DBP, mmHg

Before IHT 97.0 ± 0.5 71.7 ± 4.0 127.6 ± 3.1 80.2 ± 1 .8

IHT № 1 75.3 ± 1.3* 89.0 ± 4.3* 125.3 ± 6.1 77.8 ± 1.3

IHT № 4 76.5 ± 3.2* 90.6 ± 1.3* 124.7 ± 7.3 80.7 ± 5.4

IHT № 8 78.6 ± 2.3* 85.3 ± 4.7* 127.5 ± 7.0 76.7 ± 2.6

IHT № 11 78.1 ± 1.9* 84.6 ± 5.5* 123.4 ± 4.8 73.7 ± 1.8*

IHT № 14 77.6 ± 2.6* 86.8 ± 4.1* 127.8 ± 4.8 74.2 ± 2.8*

Note: IHT — intermittent hypoxic training; * — p < 0.05 for comparisons with pretraining data

Table 2. Hematological parameters of red blood cells and erythropoietin levels before and after the IHT program

Parameter 11-day IHT regimen 14-day IHT regimen

Before IHT After IHT Before IHT After IHT

Red blood cell count, x1012/L 4.85 ± 0.38 5.0 ± 0.32 5.1 ± 0.17 5.3 ± 0.23*

Hemoglobin, g/L 138.2 ± 5.38 143.8 ± 7.91 150.2 ± 4.2 157.3 ± 5.73*

Erythropoietin, mME/ml 7.35 ± 2.5 4.1 ± 0.96* - -

Hematocrit, % 42.4 ± 2.4 43.3 ± 2.6 45.4 ± 1.13 46.4 ± 1.83

Reticulocyte count, *109/L 71.7 ± 4.2 83.6 ± 6.7* 73.9 ± 5.2 68.9 ± 3.5

Note: * — p < 0.05 for comparisons with pretraining data.

performed to assess adaptation to intermittent hypoxia. The test determined the time it took SpO2 to decline from the initial level to 80% during hypoxic gas breathing, with F,O2 =10% (Td SpO2), and the time it took SpO2 to recover from 80% to the initial level after the participants stopped inhaling the hypoxic gas (Tr SpO2).

Statistical analysis was carried out in Mircosoft Excel 2016 (16.0.5071.1000) (Microsoft Corporation; USA). Normality of data distribution was tested using the Kolmogorov-Smirnov test. Significance of differences was assessed using Student's t test and the nonparametric Wilcoxon T test. Differences were considered significant at p < 0.05. The results are presented in the tables below as M ± m.

RESULTS

Mean SpO2, HR, SBP and DBP measured during hypoxic gas breathing are provided in Table 1. Following exposure to the hypoxic gas mixture, SpO2 decreased significantly by an average of 20.4% (p < 0.05), HR increased by 22% (p < 0.05) and DBP lowered by 4.5% (p < 0.05) relative to the initial levels. DBP did not change significantly. Subjectively, the participants tolerated the applied IHT protocol well and did not complain of any discomfort. SpO2, HR and blood pressure went back to normal when the participants were breathing ambient air. The same dynamics repeated themselves over the next cycles throughout the session.

Table 2 shows changes in the hematological parameters of red blood cells and EPO during IHT. We observed a significant increase in the absolute reticulocyte count (16.6%; p < 0.05) following the completion of the 11-day IHT regimen. There was a distinct tendency toward elevated red blood cells and total hemoglobin (p > 0.05) in the setting of the increased reticulocyte count. At the same time, serum EPO concentrations declined by 44.2% (p < 0.05) relative to the initial values. In the second part of the experiment, the duration of IHT was extended to 14 days, which led to a significant 3.9% increase in red blood cells (p < 0.05) and a 4.7% increase in hemoglobin concentrations (p < 0.05) relative to the pretraining values. However, in contrast to the 11-day regimen, the absolute reticulocyte count was not elevated after 14 days of IHT. Moreover, the absolute reticulocyte count did not differ significantly from the initial level and was by 6.7% lower than at baseline (p > 0.05). On average, hematocrit concentrations were slightly above baseline values in both parts of the experiment. However, the changes were insignificant (p > 0.05).

Fig. 1 features the results of the functional test during hypoxic gas breathing (Fp2 =10%). After 14 days of IHT, the test showed a significant increase (by 93. 5%) in the time it took SpO2 to lower to 80% (p < 0.05) and a statistically significant reduction by 44% (p < 0.05) in SpO2 recovery time relative to the pretraining values. Considering the detected shifts in the hematological parameters of red blood cells, we

hypothesize that these changes might be associated with the increased oxygen-carrying capacity of the blood following the IHT program and the developed adaptation in response to intermittent exposure to hypoxic hypoxia.

DISCUSSION

Normally, normobaric and hypobaric IHT regimens rely on PIO2 varying between 114 and 76 mmHg [7, 25, 26, 30-34]. In our study, PIO2 was maintained at 76 mmHg during the first training session but then adjusted to 68.5 mmHg for the remainder sessions. During the 14-day regimen, the participants did not have any health complaints or report discomfort. HR and blood pressure were within the normal reference range, suggesting that healthy men could tolerate the applied protocol well.

Table 1 demonstrates that the most pronounced changes in SpO2 and HR were observed in the first part of week 1 of training. Starting from week 2, the decrease in SpO2 became less pronounced, HR was growing more slowly, and DBP was significantly decreased. According to the literature, these changes might be associated with a relatively increased activity of the parasympathetic nervous system during adaptation to intermittent hypoxia [7, 8, 35] and with improved tolerance to hypoxia [36].

Our experiment demonstrates that changes in the hematological parameters of red blood cells become noticeable and statistically significant after 1.5 weeks of training. They encompass increased production of reticulocytes in the bone marrow and their mass release into the bloodstream. Today it is believed that elevated reticulocytes in the blood reflect the increased production of EPO, the major erythropoiesis regulator [37]. Under reduced PIO2, serum EPO concentrations peak in 24-48 h and can decline then a week later, approximating the initial level [38]. Erythropoiesis is a slowly activated process. Reticulocytosis becomes noticeable as late as 3-4 days after EPO elevation [37]. Our findings are consistent with the results of other studies investigating EPO dynamics. Low EPO levels and increased reticulocyte count detected after the completion of the 11-day regimen are in good agreement with the absence of reticulosis, significantly elevated red blood cells and increased hemoglobin after 14 days of IHT.

Apart from being the main physiological erythropoiesis regulator, EPO is involved in regulating the functions of the brain stem structures that control the respiratory system; specifically, EPO participates in the regulation of the hypoxic ventilatory response [39, 40]. A study measured the levels of EPO mRNA in the brain stem of rats following 2 weeks of intermittent hypoxic exposure at FIO2 equaling 12% or 7% [41]. The study found that EPO mRNA tended to decline following 2 weeks of moderately intense exposure to hypoxia (12% 02) and dropped more than twofold after a more intense hypoxia regimen (7% 02). The researchers linked the reduced EPO production to the completion of some adaptation stage after

350 -

300 -

250 -

.1 200 -

150 -

100 -

50 -

Before IHT

After IHT

Тd SpO2

^SpO2

Fig. 1. TdSpO2 and TrSpO2 values during hypoxic gas beathing (F|O2 = 10%) before and after the 14-day IHT regimen. * — p < 0.05 for comparisons with pretraining values

IHT. However, it should be born in mind that EPO expression and the intensity of erythropoiesis are interrelated through 02-dependent processes. There are reasons to assume that the initial elevation of serum EPO occurs when EPO production exceeds its utilization in the bone marrow, whereas EPO levels start to decline when increased erythropoiesis leads to the increased utilization of EPO in the bone marrow [42]. Thus, at each stage of adaptation to intermittent hypoxia a dynamic equilibrium will be maintained between the required level of EPO production in the kidneys and its utilization in the bone marrow.

The term "hypoxic dose" is often used in the academic literature about the hematological effects of hypobaric and normobaric IHT. It characterizes the capacity of an IHT protocol to have a sufficient stimulating effect on erythropoiesis by activating EPO production [26, 43]. This characteristic is determined by the P02 in the inspired air, the duration of hypoxic exposure in each cycle, periodicity of alternating exposures to inspired ambient and hypoxic air, the frequency of training sessions per week, and the total duration of the IHT program. We found that the applied 2-week regimen, which included 1-hour long daily sessions at P02 ~ 68.5 mmHg, was enough to activate erythropoiesis, increase red blood cell count, hemoglobin and oxygen-carrying capacity of the blood. With a relatively brief total exposure to a hypoxic environment, the applied hypoxic dose might not be sufficient to increase the total hemoglobin mass [32, 44].

In sports medicine, IHT has long been used to prepare athletes for competitions and improve oxygen uptake and

physical performance [45]. However, in IHT the increased oxygen-carrying capacity of the blood is not the only contributor to better endurance performance [46]. Activated under reduced P02, HIF-1 was initially described as a transcription regulator for the EPO gene [47]. Later it was discovered that HIF-1 can activate a staggering variety of genes whose involvement is not limited to adaptive hematological responses [40]. HIF-1 plays a crucial role in the response of the cardiovascular and respiratory systems to hypoxia [48]. It initiates complex responses aimed at improving lung ventilation, angiogenesis, maintaining pH and acid-base metabolism in muscle tissue [46], improving oxygen uptake by cells [28]. Each of the listed non-hematological IHT effects can contribute to improving physical performance independent of the increased oxygen-carrying capacity of the blood.

CONCLUSION

The proposed regimen included 1-hour long normobaric IHT sessions at P02 ~ 68.5 mmHg and was administered to a group of healthy male volunteers. The regimen simple and well tolerated by the participants; it provoked moderate transitory changes in cardiorespiratory parameters. The 2-week IHT program based on the proposed regimen resulted in the increased red blood cell count and elevated hemoglobin, suggesting an improvement in the oxygen-carrying capacity of the blood. The proposed regimen can be used to improve physical performance of individuals working in extreme environmental conditions.

0

References

1. Sirotinin NN. Zhizn' na vysotah i bolezn' vysoty. Kiev: Izd-vo AN USSR, 1939; 226 s. Russian.

2. Barbashova ZI. Akklimatizacija k gipoksii i ee fiziologicheskie mehanizmy. L.: Nauka, 1960; 216 s. Russian.

3. Van Lir Je, Stiknej K. Gipoksija. M.: Medicina, 1967; 368 s. Russian.

4. Agadzhanjan NA, Mirrahimov MM. Gory i rezistentnost' organizma. M.: Nauka, 1970; 182 s. Russian.

5. Kovalenko EA. Gipoksicheskaja trenirovka v medicine. Hypoxia Medical Journal. 1993; 1 (1): 2-4. Russian.

6. Berezovskij VA, Levashov MI. Vvedenie v oroterapiju. Kiev: Izd.

Akademii problem gipoksii RF, 2000; 76 s. Russian.

7. Zagajnaya EYe, Shhekochihin DYu, Kopylov FYu, Glazachev OS, Syrkin AL, Sazontova TG. Interval'nye gipoksicheskie trenirovki v kardiologicheskoj praktike. Kardiologija i serdechno-sosudistaja hirurgija. 2014; 6: 28-34. Russian.

8. Serebrovskaya TV, Shatilo VB. Opyt ispol'zovanija interval'noj gipoksii dlja preduprezhdenija i lechenija zabolevanij serdechno-sosudistoj sistemy. Obzor. Krovobig ta gemostaz. 2014; 1-2: 16-33. Russian.

9. Gridin LA. Sovremennye predstavlenija o fiziologicheskih i

lechebno-profilakticheskih jeffektah dejstvija gipoksii i giperkapnii. Medicina. 2016; 3: 45-67. Russian.

10. Kurdanova MH, Beslaneev IA, Kurdanova MdH, Batyrbekova LM, Kurdanov HA. Sistemnyj analiz nejrovegetativnoj reguljacii, funkcii jendotelija i tireoidnogo statusa u zdorovyh lic v uslovijah vysokogor'ja. Aviakosmicheskaja i jekologicheskaja medicina. 2019; 53 (1): 66-73. Russian.

11. Meerson FZ. Obshhij mehanizm adaptacii i profilaktiki. M.: Medicina, 1973; 360 s. Russian.

12. Meerson FZ. Adaptacija, stress i profilaktika. M.: Nauka, 1981; 78 s. Russian.

13. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological reviews. 2012; 92 (3): 967-1003.

14. Semenza GL. Transcriptional regulation by hypoxia-inducible factor 1. Molecular mechanisms of oxygen homeostasis. Trends in Cardiovascular Medicine. 1996; 6 (5): 151-7.

15. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2008; 24: 97-106.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

16. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood reviews. 2013; 27 (1): 41-53.

17. Weil JV, Jamieson G, Brown DW, Grover RF. The red cell mass-arterial oxygen relationship in normal man: application to patients with chronic obstructive airway disease. The Journal of Clinical Investigation. 1968; 47: 1627-39.

18. Sirotinin NN. Patogennoe dejstvie atmosfery. V knige: Gorizontov ND, Sirotinin NN, redaktory. Patologicheskaja fiziologija jekstremal'nyh sostojanij. M.: Medicina, 1973; s. 36-70. Russian.

19. Beall CA, Goldstein MC. Hemoglobin concentration, oxygen saturation and arterial oxygen content of Tibetan nomands at 4850 to 5450 m. In: Sutton JR, Coates GC, Remmers JE. Hypoxia: The Adaptations. Toronto & Philadelphia: B.C. Decker Inc., 1990; р. 59-65.

20. West JB. High-altitude medicine. American Journal of Respiratory and Critical Care Medicine. 2012; 186 (12): 1229-37.

21. Colleen GJ, Gore CJ, Randall L, Wilber RL, Daniels JT, Fredericson M et al. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. Journal of Appl Physiol. 2004; 96: 1800-7.

22. Core CJ, Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000-5,500 m). Journal of Appl Physiol. 2006; 101: 1386-93.

23. Serebrovskaya TV, Nikolskij IS, Ishhuk VA, Nikolskaya VV. Adaptacija cheloveka k periodicheskoj gipoksii: vlijanie na gemopojeticheskie stvolovye kletki i immunnuju sistemu. Vestnik Mezhdunarodnoj akademii nauk (russkaja sekcija). 2010; 2: 1218. Russian.

24. Garcia N, Hopkins SR, Power FL. Intermittent vs. continuous hypoxia: effect on ventilation and erythropoiesis in humans. Wilderness & Environmental Medicine. 2000; 11: 172-9.

25. Glazachev OS, Dudnik EN. Mediko-fiziologicheskoe obosnovanie primenenija gipoksicheski-giperoksicheskih trenirovok v adaptivnoj fizicheskoj kul'ture. Adaptivnaja fizicheskaja kul'tura. 2012; 1 (49): 2-4. Russian.

26. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013; 47: i45-i50.

27. Ushakov IB, Usov VM, Dvornikov MV, Buhtiyarov IV. Sovremennye aspekty problemy gipoksii v teorii i praktike vysotnoj fiziologii i aviacionnoj medicine. V knige: Lukjanova LD, Ushakov IB, redaktory. Problemy gipoksii. M., 2004; s. 170-200. Russian.

28. Lukjanova LD. Signal'nye mehanizmy gipoksii. M.: RAN, 2019;

Литература

1. Сиротинин Н. Н. Жизнь на высотах и болезнь высоты. Киев: Изд-во АН УССР, 1939; 226 с.

2. Барбашова З. И. Акклиматизация к гипоксии и ее физиологические механизмы. Л.: Наука, 1960, 216 с.

215 s. Russian.

29. Tarasova AS, Vodjaga VK, Elizarov AN, Kovalenko EA. K voprosu ob ispol'zovanii gipoksicheskogo testa v uslovijah nizkogornogo kurorta Kislovodsk. Hypoxia Medical Journal. 1995; 3: 9-10. Russian.

30. Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, et al. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. Journal of Hypertension. 2009; 27: 1648-54.

31. Torchilo VV. Ocenka i prognozirovanie jeffektivnosti gipobaricheskoj gipoksii dlja optimizacii rabotosposobnosti operatorov aviacionnoj profilja [dissertacija]. SPb., 2001. Russian.

32. Wilber RL. Application of Altitude. Hypoxic training by elite athletes. Medicine & Science in Sports & eExercise. 2007; 39 (9): 1610-24.

33. Kotov OV. Gipoksicheskaja trenirovka i jelektroimpul'snaja reguljacija v sisteme medicinskoj reabilitacii posle vozdejstvija faktorov kosmicheskogo poleta [dissertacija]. SPb., 2010. Russian.

34. Lesova EM, Samojlov VO, Filippova EB, Savokina OV. Individual'nye razlichija pokazatelej gemodinamiki pri sochetanii gipoksicheskoj i ortostaticheskoj nagruzok. Vestnik Rossijskoj voenno-medicinskoj akademii. 2015; 1 (49): 57-63. Russian.

35. Meerson FZ. Mehanizmy fenotipicheskoj adaptacii i principy ee ispol'zovanija dlja preduprezhdenija serdechno-sosudistyh narushenij. Kardiologija. 1978; 18 (10): 18-29. Russian.

36. Bernardi L, Passino C, Serebrovskaya Z, Serebrovskaya T, Appenzeller O. Respiratory and cardiovascular adaptations to progressive hypoxia. Effect of interval hypoxic training. European Heart Journal. 2001; 22 (10): 879-86.

37. Jelkmann W. Regulation of erythropoietin production. The Journal of Physiology. 2011; 589 (6): 1251-8.

38. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Medicine. 2001; 31: 533-57.

39. Soliz J, Soulage C, Hermann DM, Gassmann M. Acute and chronic exposure to hypoxia alters ventilatory pattern but not minute ventilation of mice overexpressing erythropoietin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007; 293: R1702-10.

40. Sasaki R, Masuda S, Nagao M. Erythropoietin: multiple physiological functions and regulations of biosynthesis. Bioscience, Biotechnology, and Biochemistry. 2000; 64: 1775-93.

41. Kolesnikova EYe, Garmatina OYu, Drevickaya TI. Jekspressija mRNK jeritropojetina v stvole mozga krys pri adaptacii k interval'noj gipoksii. Nejrofiziologija. 2009; 41 (3): 226-30. Russian.

42. Grover RF, Bartsch P. Blood. In: Hornbein TF, Schoene RD, editors. High altitude. An Exploration of human adaption. New York: Dekar, 2001; p. 493-523.

43. Holliss BA, Fulford J, Vanhatalo A, Pedral CR, Jones AM. Influence of intermittent hypoxic training on muscle energetic and exercise. Journal of Appl Physiol. 2013; 114: 611-19.

44. Levine BD. Intermittent hypoxic training: Fact and fancy. High Altitude Medicine & Biology. 2002; 3 (2): 177-93.

45. Kolchinskaya AZ. Interval'naja gipoksicheskaja trenirovka v sporte vysshih dostizhenij. Sportivnaja medicina. 2008; 1: 9-25. Russian.

46. Core CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Medicine & Science in Sports & Exercise. 2007; 39 (9): 1600-9.

47. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology. 1992; 12 (12): 5447-54.

48. Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Appl Physiol. 2004; 96: 1173-7.

3. Ван Лир Э., Стикней К. Гипоксия. М.: Медицина, 1967; 368 с.

4. Агаджанян Н. А., Миррахимов М. М. Горы и резистентность организма. М.: Наука, 1970; 182 с.

5. Коваленко Е. А. Гипоксическая тренировка в медицине.

Hypoxia Medical Journal. 1993; 1 (1): 2-4.

6. Березовский В. А., Левашов М. И. Введение в оротерапию. Киев: Изд. Академии проблем гипоксии РФ, 2000; 76 с.

7. Загайная Е. Э., Щекочихин Д. Ю., Копылов Ф. Ю., Глазачев О. С., Сыркин А. Л., Сазонтова Т. Г. Интервальные гипоксические тренировки в кардиологической практике. Кардиология и сердечно-сосудистая хирургия. 2014; 6: 28-34.

8. Серебровская Т. В., Шатило В. Б. Опыт использования интервальной гипоксии для предупреждения и лечения заболеваний сердечно-сосудистой системы. Обзор. Кровобг та гемостаз. 2014; 1-2: 16-33.

9. Гридин Л. А. Современные представления о физиологических и лечебно-профилактических эффектах действия гипоксии и гиперкапнии. Медицина. 2016; 3: 45-67.

10. Курданова М. Х., Бесланеев И. А., Курданова Мд. Х., Батырбекова Л. М., Курданов Х. А. Системный анализ нейровегетативной регуляции, функции эндотелия и тиреоидного статуса у здоровых лиц в условиях высокогорья. Авиакосмическая и экологическая медицина. 2019; 53 (1): 66-73.

11. Меерсон Ф. З. Общий механизм адаптации и профилактики. М.: Медицина, 1973; 360 с.

12. Меерсон Ф. З. Адаптация, стресс и профилактика. М.: Наука, 1981; 78 с.

13. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological reviews. 2012; 92 (3): 967-1003.

14. Semenza GL. Transcriptional regulation by hypoxia-inducible factor 1. Molecular mechanisms of oxygen homeostasis. Trends in Cardiovascular Medicine. 1996; 6 (5): 151-7.

15. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2008; 24: 97-106.

16. Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood reviews. 2013; 27 (1): 41-53.

17. Weil JV, Jamieson G, Brown DW, Grover RF. The red cell mass-arterial oxygen relationship in normal man: application to patients with chronic obstructive airway disease. The Journal of Clinical Investigation. 1968; 47: 1627-39.

18. Сиротинин Н. Н. Патогенное действие атмосферы. В книге: Горизонтов Н. Д., Сиротинин Н. Н., редакторы. Патологическая физиология экстремальных состояний. М.: Медицина, 1973; с. 36-70.

19. Beall CA, Goldstein MC. Hemoglobin concentration, oxygen saturation and arterial oxygen content of Tibetan nomands at 4850 to 5450 m. In: Sutton JR, Coates GC, Remmers JE. Hypoxia: The Adaptations. Toronto & Philadelphia: B.C. Decker Inc., 1990; р. 59-65.

20. West JB. High-altitude medicine. American Journal of Respiratory and Critical Care Medicine. 2012; 186 (12): 1229-37.

21. Colleen GJ, Gore CJ, Randall L, Wilber RL, Daniels JT, Fredericson M et al. Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. Journal of Appl Physiol. 2004; 96: 1800-7.

22. Core CJ, Rodriguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD. Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4000-5,500 m). Journal of Appl Physiol. 2006; 101: 1386-93.

23. Серебровская Т. В., Никольский И. С., Ищук В. А., Никольская В. В. Адаптация человека к периодической гипоксии: влияние на гемопоэтические стволовые клетки и иммунную систему. Вестник Международной академии наук (русская секция). 2010; 2: 12-18.

24. Garcia N, Hopkins SR, Power FL. Intermittent vs. continuous hypoxia: effect on ventilation and erythropoiesis in humans. Wilderness & Environmental Medicine. 2000; 11: 172-9.

25. Глазачев О. С., Дудник Е. Н. Медико-физиологическое обоснование применения гипоксически-гипероксических тренировок в адаптивной физической культуре. Адаптивная физическая культура. 2012; 1 (49): 2-4.

26. Faiss R, Girard O, Millet GP. Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med. 2013; 47: i45-i50.

27. Ушаков И. Б., Усов В. М., Дворников М. В., Бухтияров И. В.

Современные аспекты проблемы гипоксии в теории и практике высотной физиологии и авиационной медицине. В книге: Лукьянова Л. Д., Ушаков И. Б., редакторы. Проблемы гипоксии. М., 2004; с. 170-200.

28. Лукьянова Л. Д. Сигнальные механизмы гипоксии. М.: РАН, 2019; 215 с.

29. Тарасова А. С., Водяга В. К., Елизаров А. Н., Коваленко Е. А. К вопросу об использовании гипоксического теста в условиях низкогорного курорта Кисловодск. Hypoxia Medical Journal. 1995; 3: 9-10.

30. Haider T, Casucci G, Linser T, Faulhaber M, Gatterer H, Ott G, et al. Interval hypoxic training improves autonomic cardiovascular and respiratory control in patients with mild chronic obstructive pulmonary disease. Journal of Hypertension. 2009; 27: 1648-54.

31. Торчило В. В. Оценка и прогнозирование эффективности гипобарической гипоксии для оптимизации работоспособности операторов авиационного профиля [диссертация]. СПб., 2001.

32. Wilber RL. Application of Altitude. Hypoxic training by elite athletes. Medicine & Science in Sports & eExercise. 2007; 39 (9): 1610-24.

33. Котов О. В. Гипоксическая тренировка и электроимпульсная регуляция в системе медицинской реабилитации после воздействия факторов космического полета [диссертация]. СПб., 2010.

34. Лесова Е. М., Самойлов В. О., Филиппова Е. Б., Савокина О. В. Индивидуальные различия показателей гемодинамики при сочетании гипоксической и ортостатической нагрузок. Вестник Российской военно-медицинской академии. 2015; 1 (49): 57-63.

35. Меерсон Ф. З. Механизмы фенотипической адаптации и принципы ее использования для предупреждения сердечнососудистых нарушений. Кардиология. 1978; 18 (10): 18-29.

36. Bernardi L, Passino C, Serebrovskaya Z, Serebrovskaya T, Appenzeller O. Respiratory and cardiovascular adaptations to progressive hypoxia. Effect of interval hypoxic training. European Heart Journal. 2001; 22 (10): 879-86.

37. Jelkmann W. Regulation of erythropoietin production. The Journal of Physiology. 2011; 589 (6): 1251-8.

38. Hahn AG, Gore CJ. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Medicine. 2001; 31: 533-57.

39. Soliz J, Soulage C, Hermann DM, Gassmann M. Acute and chronic exposure to hypoxia alters ventilatory pattern but not minute ventilation of mice overexpressing erythropoietin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007; 293: R1702-10.

40. Sasaki R, Masuda S, Nagao M. Erythropoietin: multiple physiological functions and regulations of biosynthesis. Bioscience, Biotechnology, and Biochemistry. 2000; 64: 1775-93.

41. Колесникова Е. Э., Гарматина О. Ю., Древицкая Т. И. Экспрессия мРНК эритропоэтина в стволе мозга крыс при адаптации к интервальной гипоксии. Нейрофизиология. 2009; 41 (3): 226-30.

42. Grover RF, Bartsch P. Blood. In: Hornbein TF, Schoene RD, editors. High altitude. An Exploration of human adaption. New York: Dekar, 2001; р. 493-523.

43. Holliss BA, Fulford J, Vanhatalo A, Pedral CR, Jones AM. Influence of intermittent hypoxic training on muscle energetic and exercise. Journal of Appl Physiol. 2013; 114: 611-19.

44. Levine BD. Intermittent hypoxic training: Fact and fancy. High Altitude Medicine & Biology. 2002; 3 (2): 177-93.

45. Колчинская А. З. Интервальная гипоксическая тренировка в спорте высших достижений. Спортивная медицина. 2008; 1: 9-25.

46. Core CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Medicine & Science in Sports & Exercise. 2007; 39 (9): 1600-9.

47. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molecular and Cellular Biology. 1992; 12 (12): 5447-54.

48. Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Appl Physiol. 2004; 96: 1173-7.

i Надоели баннеры? Вы всегда можете отключить рекламу.