Научная статья на тему 'Adaptation of the exterior wall construction of the industrial building located in the city of Jizzah to the requirements of building codes 2.01.04 2018 “Thermal technique in construction”'

Adaptation of the exterior wall construction of the industrial building located in the city of Jizzah to the requirements of building codes 2.01.04 2018 “Thermal technique in construction” Текст научной статьи по специальности «Техника и технологии»

CC BY
4
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Science and Education
Область наук
Ключевые слова
industrial building / brick / thermal insulation material / mineral plate / energy-saving / levels of heat protection

Аннотация научной статьи по технике и технологии, автор научной работы — Dilshod Orziqul O’G’Li Ziyaviddinov, Behruz Aziz O’G’Li Yunusov, Akbarxon Qahramon O’G’Li Abdunabiyev, Chinora Ahmadjon Qizi Xudoyberdiyeva

This article shows the calculation work and its solution for increasing the overall heat transfer resistance of the external wall constructions of the industrial building designed for the production of natural materials, built of low-rise brick, located in the city of Jizzakh. This solution is aimed at increasing thermal protection for winter conditions in accordance with the requirements of BUILDING CODES 2.01.04-18 “Construction thermal engineering”.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Adaptation of the exterior wall construction of the industrial building located in the city of Jizzah to the requirements of building codes 2.01.04 2018 “Thermal technique in construction”»

Adaptation of the exterior wall construction of the industrial building located in the city of Jizzah to the requirements of building codes 2.01.04 - 2018 "Thermal technique in

construction"

Dilshod Orziqul o'g'li Ziyaviddinov Behruz Aziz o'g'li Yunusov Akbarxon Qahramon o'g'li Abdunabiyev Chinora Ahmadjon qizi Xudoyberdiyeva Jizzax politexnika instituti

Abstract: This article shows the calculation work and its solution for increasing the overall heat transfer resistance of the external wall constructions of the industrial building designed for the production of natural materials, built of low-rise brick, located in the city of Jizzakh. This solution is aimed at increasing thermal protection for winter conditions in accordance with the requirements of BUILDING CODES 2.01.04-18 "Construction thermal engineering".

Keyword: industrial building, brick, thermal insulation material, mineral plate, energy-saving, levels of heat protection

After our country gained independence, many changes took place in our country. Many constructions and construction works were carried out. In particular, many industrial buildings, agricultural buildings and residential buildings have been built and are being built for our population. The demand for the use of natural gas and electricity for heating and lighting these buildings has also increased noticeably. In accordance with the decision of the head of state No. PQ-4779 dated 10.07.2020, the funds of the Fund (Energy Savings Fund) will be used to increase the energy efficiency of buildings and multi-apartment buildings by introducing energy-efficient technologies and devices from renewable energy sources , including financing the preparation of the technical-economic justification of projects for improving thermal protection, as well as conducting an energy audit, and similar decisions were made. Also, the Cabinet of Ministers adopted the decision No. 640 dated 9.10.2020 "On approval of the regulation on the off-budget intersectoral energy saving fund under the Ministry of Energy of the Republic of Uzbekistan". The number of operational residential and industrial buildings in our republic is greater than the number of newly built residential and industrial buildings. Taking this into account, it is appropriate to design newly constructed and operated industrial and residential buildings on the basis of BUILDING CODES . There are also a number of operating

industrial buildings in the city of Jizzakh, which do not meet the requirements of BUILDING CODES 2.01.04-2018. In this article, calculation works for the winter season and one of its solutions for increasing the energy efficiency of the external wall structure of a low-rise industrial building intended for the production of yarn and materials, located in the territory of the Olmazor Square of Jizzakh city, are shown. For heat-physical calculations, we determine the necessary information provided by BUILDING CODES 2.01.01 - 22 and 2.01.04 - 18.

The construction area of the city of Jizzakh, the city is located in the dry zone in terms of humidity, the average temperature of the city's coldest sotka is 0.98 as the

calculated outdoor air temperature = - 22, the coldest sotka is provided ( average

temperature of 0.92 = -19 , the coldest five-day supply (coldest) average

temperature of 0.92 = H -19 , the coldest three-day supply (coldest) 0.92 We

t3 t3 t1 t5 determine the average temperature H by the following formule: H= H+ H/2= -19-

19/2=-19°c, average temperature of July tH=+28,6°c, the maximum amplitude of daily

fluctuations of the outdoor air temperature of the city in July ^tH=24,9 °c, Maximum

and average solar radiation for vertical surfaces facing west from the guide as the

2 2

structure is a wall Max=746 Vt/M , J„-rt=l 72 Vt/M , The minimum value of the average wind speed for the month of July with a repetition of 16% and more in terms of directions for the city is V=2.6m/s, for the development room that is being designed from the application in accordance with the function of the room of the industrial building, where the external barrier construction is considered the relative

temperature and relative humidity of the indoor air = 30; ^ = 45 %.

= 30 °c and = 45 % based on the values, the humidity regime of the house

is moderate, taking into account the moderate humidity regime of the house and the

location of the city of Jizzakh in the dry zone, the operating conditions of the wall are

A. Since the outer wall construction is made of solid bricks, this construction is

considered homogeneous. The external wall structure is plastered with a 30 mm thick

lime-sand mixture from the inside and a 30 mm cement-sand mixture from the

i

outside. We determine their volumetric weight, heat transfer coefficient and heat

c

absorption coefficient .

Small ceramic brick: r = 1600kg/m^ a = 0,58 Vt/(u ■ °Q s=7 9l Vt/tf ■ °C). Lime sand mixture; r = 1600kg/m^ a = 0,7 w/(M ■ 5 = 8,08 Vt/(m* ■ °Q Cement-sand mixture; r = * = 0,76 Vt/{» 5 = 9,60 Vt/(m2 ■ °C)

c

1-picture. Scheme of the external wall construction made of aerated brick, a-layer ( 1 ) plaster made of cement-sand-lime mixture, b-layer ( 2 ) small ceramic brick, v-layer

Si

( 3 ) plaster made of cement-sand mixture. Normative temperature difference according to the function and type of

construction of the furnace ^^ = heat transfer coefficient of internal and external surfaces, depending on the type of construction and the nature of its surfaces a+

vi-

va

Ft

23— * °c

w : , coefficient that takes into account the position of the

outer surface in relation to the outside air, depending on the type of barrier construction n=l, coefficient that takes into account the position of the outer surface in relation to the outside air, depending on the type of barrier construction P =

Thermal-physical calculation of the external wall structure restored from small-sized (ceramic) bricks for winter conditions.

Using the collected data, we determine the total heat transfer resistance of the external wall structure reconstructed from small ceramic bricks using the following formula:

1 5h 5, 1

R„m = Ri-Ri+R, = —+ + — = — +

0,03 0,38 0,03

Aj Az A3 at 8,7 0,7 0,58

+

0,76 23

= 0,114+0,042 + 0,655 + 0,039 + 0,043 = 0,893 M2K°C/Vt

We determine the thermal inertia of the structure using the following formula:

D = 3.■ S< +i S„ = 003.8,69 + 0.38.8,08 + 003.9,60 = 6,04

4 A2 A3 0,7 0,58 0,76

4<D=6,04 because, according to the instructions, we take ^ = -19,° 0C determined in point 3 as the calculation temperature of the outside air.

We determine the required value of resistance to heat transfer for the structure using the following formula:

RT e =

um

(tB -tH)• « _ (30 +19)-1 AtH-an " 4-8,7

= 1,12m2-0 C / Vt

r > RT.E

um > um Let's check if the condition is fulfilled:

jT .E

Rum = 0,893 > =112m ■ /Vt the condition was not met.

Therefore, it is necessary to increase the thermal protection of the external wall structure of the industrial building made of bricks. In buildings under construction and repair, the total heat transfer resistance of external barrier structures should correspond to the heat transfer resistance listed in Table 2-a, b and c in accordance with the requirements of BUILDING CODES 2.01.04-18. In order to accept the quoted heat transfer resistance from BUILDING CODES 2.01.04-18, the heating period is determined first. When accepting the value of heat transfer resistance, it is necessary to determine the degree per day for the heating period. This quantity is determined using the following formula.

^d ^o'rt.sut.harorat) ^is.davrL

We determine the average daily temperature of the heating period:

We determine the degree day for the heating period:

Dd = (30aC - 5,14 DC) ■ 143,5 = 3567,41 0 sutka-,

Based on this, we determine the heat transfer resistance given by the specified level of thermal protection for the external wall structure:

For level 1: ^ = ^26m2 civt, For level 2: = ^ cIVt, For level 3:

RTmE = 2,2m2 CI Vt

Now we will check the fulfillment of the condition stated in BUILDING CODES 2.01.04-18.

Rum = 0,893 > RUmE = 1,26m2 CI Bt, Rum = 0,893 > R^ = 1,6m2 CI Bt,

Rum = °,893 > RlmE = 2,2m c 1 Bt conditions were not met.

For this reason, we increase its thermal protection by covering the residential

building with mineral boron (mineral plate) with a density of Y =100kg/m3 (A =0.061 °C/W) from the outside. Its calculated thickness for three levels is determined by the following formula:

51 S2

Aj A2 A3

-^X/L

a,/

For level 1 = ^1,26 ~~ °'114-- °'042 ~ °'655 - °'039 - 0,043>0,061 = 0,022 m. Constructively, we accept 0,03 m (3 cm).

For level 2 ®4 = C1,6 _ °'114_ °'042 ~ °'655 - °'039 - 0,043)x0,061 = 0,043 m. Constructively, we accept 0,05 m (5 cm).

For level 3 ®4 = ^2'2 ~ °'114_ °'042 ~ °'655 ~ °'039 ~ 0,043)jt0,061 = 0,079 m. Constructively, we accept 0,05 m (5 cm).

Now we recalculate the total heat transfer resistance of all three layers: = 0,114 + 0,042 + 0,655 + 0,491 + 0,039 + 0,043 = 1,3S m2xaC/Vt

R2= 0,114 + 0,042 + 0,655 + 0,S19 + 0,039 + 0,043 = 1,71 m2x°C /Vt = 0,114 + 0,042 + 0,655 + 1,311 + 0,039 + 0,043 = 2,204 M2xflC/Vt

Now let's check the fulfillment of the 3 levels of condition stated in BUILDING CODES 2.01.04-18:

Rum > RLe = 1,38 > Rm = 1,2M2 c/Vt, Rum > RU: = 1,71 > RUme = 1,6m2 c/Vt,

> = 2,204 > c; = 20M*C/Vt conditions ^ met

Pic 2. The scheme of the external wall construction made of bricks covered with heat-insulating material, a-layer ( plaster made of cement-sand-lime mixture, b-layer

Si s

small

ceramic brick, g-layer ( 3) thermal insulation material (mineral plate), v-

c

layer ( 4 ) plaster made of cement-sand mixture.

From the results of the above-mentioned theoretical thermal-physical calculations, it can be concluded that during the repair of the external wall structure of the industrial building built of low-floor bricks in operation at Almazor MFY, Jizzah city, its total heat transfer was reduced by covering it with an 8 cm thick mineral plate from the outside. increasing its resistance while fully meeting the requirements of 3 levels of thermal protection specified in BUILDING CODES 2.01.04-18.

References

1. G'ayrat Shukurov, Dilnoza Islamova « Qurilish fizikasi » darslik Toshkent «Yangi asr avlodi" 2018 - yil.

2. Ziyaviddinov, D. O. O. G. L., & Qurbonov, J. (2023). Jizzax shahrida eksplutatsiya qilinayotgan g'ishtli turar-joy binosining tashqi devor konstruksiyasining energiya samaradorligini oshirish. Science and Education, 4(4), 553-559

3. www.lex.uz. 2020 - yil 10 - iyuldagi «Iqtisodiyotning energiya samaradorligini oshirish va mavjud resurslardan foydalanish orqali iqtisodiyot tarmoqlarining yoqilg'i-energetika mahsulotlariga bog'liqligini kamaytirish bo'yicha qo'shimcha chora - tadbirlar to'g'risida"gi PQ - 4779 - son qarori.

4. BUILDING CODES 2.01.01-22 « Climatic and physical-geological data for planning", Tashkent 2022 - year.

5. BUILDING CODES 2.01.04 - 18 « Construction heat engineering", Tashkent

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2018

6. Алиев, М. Р. (2020). Экспериментальное определение динамических характеристик кирпичных школьных зданий. Academy, (11 (62)), 66-70.

7. Rakhmonkulovich, A. M., & Abdumalikovich, A. S. (2019). Increase seismic resistance of individual houses with the use of reeds. Modern Scientific Challenges And Trends, 189.

8. Юсупов, У. Т., Алиев, М. Р., & Рузматов, И. И. (2021). Энергоэффективность новых жилых домов. Science and Education, 2(5), 131-143.

9. Юсупов, У. Т., Алиев, М. Р., & Илх,омов, Р. (2021). Архитектурное решение энергоэффективных многоэтажных жилых домов. Science and Education, 2(5), 276-287.

10. Алиев, М. Р. (2022). Характерные повреждения индивидуальных домов со стенами из сырцового кирпича. Eurasian Journal of Academic Research, 2(3), 264-268.

11. Aliyev, M. R. (2022). Bino va inshootlarning konstruksiyalarini tekshirishning asosiy bosqichlari. Science and Education, 3(2), 98-102.

12. Asatov, N., Tillayev, M., & Raxmonov, N. (2019). Parameters of heat treatment increased concrete strength at its watertightness. In E3S Web of Conferences (Vol. 97, p. 02021). EDP Sciences.

13. Рахмонов, Н. Э. (2020). Проблемы разработки отечественного синтетического пенообразователя. Academy, (11 (62)), 93-95.

14. Rahmonov, N. E. (2022). Energiya samarador uylar qurilishini qishloq sharoitida ommalashtirish istiqbollari. Science and Education, 3(2), 169-174.

15. Асатов, Н. А., & Рахмонов, Н. Э. (2022). Пути уменьшения краевого эффекта при расчете конического купола с учетом влияния преднапряженного опорного контура. Eurasian Journal of Academic Research, 2(3), 260-263.

16. Ablayeva, U., & Normatova, N. (2019). Energy saving issues in the design of modern social buildings. Problems of Architecture and Construction, 2(1), 59-62.

17. Норматова, Н. А. (2020). Проектирование энергосберегающих зданий в условиях узбекистана. Academy, (11 (62)), 89-92.

18. Аблаева, У. Ш., & Норматова, Н. А. (2021). Тошкент: лойих,алашнинг анъанавийликдан хозирги кунигача. Science and Education, 2(5), 206-216.

19. Aблаева, У. Ш., & Норматова, Н. А. (2021). Узбекистондаги мавжуд биноларнинг энергия тежамкор шамоллатиладиган тизимлари асосий системалари. Science and Education, 2(5), 193-205.

20. Норматова, Н. А. (2022). Саноат биноси ташки деворининг иссиклик самарадорлигини аниклаш ва ечиш. Eurasian Journal of Academic Research, 2(3), 224-227.

21. Испандиярова, У. Э. К. (2020). Усиление мостовых железобетонных балок высокопрочными композиционными материалами. European science, (6 (55)), 63-67.

22. Асатов, Н. А., & Испандиярова, У. Э. К. (2021). Бетон с комплексной добавкой на основе суперпластификатора и кремнийорганического полимера. Academy, (5 (68)), 6-10.

23. Испандиярова, У. Э., & Исаев, Р. А. (2023). Рост промышленного и жилищного строительства в нашей республике, актуальные вопросы, стоящие перед строителями. Science and Education, 4(4), 413-420.

24. Карабеков, У. А., & Каримов, В. Ш. У. (2021). Использование ГИС-технологий в городах строителство. Science and Education, 2(5), 257-262.

25. Karabekov, U. A. (2022). Improve the use of gis in land management for agriculture and farmers. Eurasian Journal of Academic Research, 2(3), 256-259.

26. Karabekov, U. B. A. (2022). Qishloq xo'jaligi va landshaft kartalarini yaratishda GAT dasturlarini qo'llash texnologiyasini takomillashtirish. Science and Education, 3(2), 163-168.

27. Gayrat, S., Salimjon, M. K., & Dilshod, Z. (2022). The heat does not cover the roof of residential buildings increase protection. Galaxy International Interdisciplinary Research Journal, 10(2), 674-678.

28. Асатов, Н. А., & Саримсоков, С. Ш. (2022). Экспериментальные исследования динамических параметров висячих систем. Eurasian Journal of Academic Research, 2(3), 232-237.

29. Sarimsoqov, S. S. (2022). Armaturalangan ikki qiyali yog'och to'sinni loyihalash. Science and Education, 3(2), 175-183.

30. Sarimsoqov, S. (2019). The main characteristics of the situational method of teaching a foreign language. In science and practice: a new level of integration in the modern world (pp. 205-207).

31. Uktamovich, S. B., Yuldashevich, S. A., Rahmonqulovich, A. M., & Uralbayevich, D. U. (2016). Review of strengthening reinforced concrete beams using cfrp Laminate. European science review, (9-10), 213-215.

32. Asatov, N., Jurayev, U., & Sagatov, B. (2019). Strength of reinforced concrete beams hardenedwith high-strength polymers. Problems of Architecture and Construction, 2(2), 63-65.

33. Sagatov, B., & Rakhmanov, N. (2019). Strength of reinforced concrete elements strengthened with carbon fiber external reinforcement. Problems of Architecture and Construction, 2(1), 48-51.

34. Ашрабов, А. А., Сагатов, Б. У., & Алиев, М. Р. (2016). Усиление тканевыми полимерными композитами железобетонных балок с трещинами. Молодой ученый, (7-2), 37-41.

35. Sagatov, B. U. (2022). O'zbekistonda energiya tejamkor binolar qurilishining ahvoli. Science and Education, 3(1), 261-265.

36. Sagatov, B. U. (2022). Composite materials for reinforcing ferro-concrete elements. Eurasian Journal of Academic Research, 2(3), 281-285.

37. Abdurakhmanov, A. M. (2020). Ventilated hinged view and its properties. in синтез науки и образования в решении глобальных проблем современности (pp. 37-43).

38. Асатов, Н. А., & Абдурахмонов, А. М. (2023). Исследование энергоаудита жилого здания для устойчивого развития с использованием возобновляемых источников энергии. актуальные проблемы научных исследований: теоретический, 16.

39. Асатов, Н. А., & Абдурахмонов, А. М. (2023). Исследование меры энергоэффективности и экономического анализа изоляционных материалов в строительном секторе. глобализация науки: история, современное состояние, 19.

40. Асатов, Н. А. (2023). Анализ ислледования ультранизкого энергопотребления зданий из передовых материалов и необходимые условия для них. central asian journal of arts and design, 79-83.

41. Abdurakhmanov, A. M., & Pak, D. A. (2021). Analysis of a research of a technique of construction of reinforcing frameworks. Сборник статей подготовлен на основе докладов Международной научно-практической, 3.

42. Пармонов, Н. Н., & Абдурахманов, А. М. (2021). Новая энергоэффективная технология, применяемая в производственных процессах. In Технические и технологические основы инновационного развития (pp. 3032).

43. Pak, D. A. (2021). TECHNIQUE INCREASE IN FIRE RESISTANCE METAL DESIGNS. In ИНТЕГРАЦИЯ НАУКИ, ОБЩЕСТВА, ПРОИЗВОДСТВА И ПРОМЫШЛЕННОСТИ: ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ (pp. 9-10).

44. Пармонов, Н. Н., & Абдурахманов, А. М. (2021). ИССЛЕДОВАНИЕ СПОСОБОВ РАСЧЕТА СТАТИЧНО НЕОПРЕДЕЛИМЫХ СИСТЕМ. In ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ: АКТУАЛЬНЫЕ ВОПРОСЫ, ДОСТИЖЕНИЯ И ИННОВАЦИИ (pp. 48-50).

45. Kobilov, B. U., & Abdurakhmanov, A. M. (2021). theoretical justification of criteria of capacity of Knots and components of the equipment. In концепции,

теория и методика фундаментальных и Прикладных научных исследований (pp. 136-137).

46. Inomovich, A. N. (2021). Principles of Reconstruction and Formation of Residential Buildings Typical of Historical City Centers. European journal of innovation in nonformal education, 1(2), 29-40.

47. Inomovich, A. N. (2021). CHARACTERISTICS OF HISTORICAL SAMARKAND CITY CENTERS. International Journal of Discoveries and Innovations in Applied Sciences, 1(5), 155-158.

48. Inomovich, A. N. (2022). Cement Hardening and its Kinetic Features. European Journal of Life Safety and Stability (2660-9630), 13, 54-57.

49. Асатов, Н. А., Сагатов, Б. У., & Нишонова, Д. И. (2023). Проектирование солнцезащитного устройства в условиях сухого жаркого климата. Science and Education, 4(4), 460-468.

50. Асатов, Н. А., Сагатов, Б. У., & Джавлонова, Ш. Г. К. (2023). Перспективы реконструкции производственных зданий. Science and Education, 4(4), 445-451.

51. Asatov, N. A., Sagatov, B. U., & Egamberdiyev, T. T. O. G. L. (2023). O'zbekiston Respublikasida 1970-2020 yillarda qurilgan turar-joy binolari. Science and Education, 4(4), 452-459.

52. Джураев, У. У. (2021). Влияние минеральных добавок в агрессивной среде на прочность керамзитобетона. Science and Education, 2(5), 144-154.

53. Dzhuraev, U. U. (2020). Improving the technical condition of buildings and structures on the basis of verification calculation.

54. Djurayev, U., & Mingyasharova, A. (2019). Determination of the technical condition of buildings and structures on the basis of verification calculations. Problems of Architecture and Construction, 1(4), 37-39.

55. Джураев, У. У. (2020). Повышение технического состояния зданий и сооружений на основе поверочного расчета. Academy, (11 (62)), 70-74.

56. Ziyaviddinov, D. O. O. G. L., & Qurbonov, J. (2023). Jizzax shahrida eksplutatsiya qilinayotgan g'ishtli turar-joy binosining tashqi devor konstruksiyasining energiya samaradorligini oshirish. Science and Education, 4(4), 553-559

i Надоели баннеры? Вы всегда можете отключить рекламу.