Научная статья на тему 'ACIDIC AND VITAMIN COMPOSITION OF DENDROSTELLERA STACHYOIDES, THYMELAEACEAE FAMILY'

ACIDIC AND VITAMIN COMPOSITION OF DENDROSTELLERA STACHYOIDES, THYMELAEACEAE FAMILY Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
70
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
AMINO ACIDS / FATTY ACIDS / ASCORBIC ACID / RETINOL / TOCOPHEROL

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Datkhayev Y.U., Seitimova G.A., Burasheva G.Sh.

The article presents the results of the study of the qualitative composition and quantitative content of vitamins, fat and amino acids in the aboveground part of the plant genus Dendrostellera stachyoides of Thymelaeaceae family. Group A, E and C vitamins have been detected. On the gas-liquid chromatograph "Carlo Erba-4200" (Italy-USA) were determined fat and amino acid compositions, which are represented by 8 fat and 20 amino acids.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «ACIDIC AND VITAMIN COMPOSITION OF DENDROSTELLERA STACHYOIDES, THYMELAEACEAE FAMILY»



UDC 547-32

IRSTI 31.23.23; 31.23.27; 31.23.33

Y.U. Datkhayev, G.A. Seitimova, G.Sh. Burasheva

Al-Farabi Kazakh National University, Almaty, Kazakhstan

ACIDIC AND VITAMIN COMPOSITION OF DENDROSTELLERA STACHYOIDES,

THYMELAEACEAE FAMILY

The article presents the results of the study of the qualitative composition and quantitative content of vitamins, fat and amino acids in the aboveground part of the plant genus Dendrostellera stachyoides of Thymelaeaceae family. Group A, E and C vitamins have been detected. On the gas-liquid chromatograph "Carlo Erba-4200" (Italy-USA) were determined fat and amino acid compositions, which are represented by 8 fat and 20 amino acids.

Keywords: Thymelaeaceae, Dendrostellera Stachyoides, amino acids, fatty acids, ascorbic acid, retinol, tocopherol,

Relevance

In addition to nucleic acids and carbohydrates, fat and amino acids are components of a living cell.

Amino acids are one of the most important classes of natural compounds and are structural elements of peptides and polypeptides contained in absolutely all living organisms on the planet. [1]

The content of amino acids in plants varies depending on the age of the plant, external conditions: temperature, length of day, moisturizing, etc., as well as nutrition. This changes not only the concentration, but also the quality of the amino acids. The amount of free amino acids decreases with the age of the plants. There are more free amino acids in vegetative organs of plants than reproductive ones (for proteins there is an inverse dependence). The increase in the total amount of free amino acids is observed when plants are undernourished with potassium, phosphorus, sulphur, calcium and magnesium. The same effect occurs in the absence of a number of trace elements: zinc, copper, manganese, iron. This is due to the weakening of protein synthesis from amino acids under these conditions. The increase in amino acids is also observed in the improvement of nitrogen nutrition. [2]

Fatty acids of individual organs and tissues biosynthesize or cumulate in the lipid fraction of cell membranes strictly specific polyene acids, which serve as a material for the formation of prostoglandiclike substances of natural genesis. Prostoglandins are essentially unsaturated higher hydroxylated fatty acids, with the number of carbon atoms in the chain 20, characterized by the presence of a pentacycle in position C8-11.

Fatty acids are extracted from plant materials with a mixture of chloroform-methanol (2:1) or (1:1).

To extract the sum of free fatty acids, the alcohol extract is washed when heated in a flask with a backfill with an excess of aqueous alkaline solution. After washing, the sample is neutralized by hydrochloric or sulfuric acid solution, in addition 3-5% aqueous solution of phosphorus-molybdenum acid is added. The amount of acids is separated by centrifugation or filtering [1].

In plants, the structural diversity of fatty acids is determined by the degree and nature of carbon chain branching, the number and position of double bonds, the nature and number of other functional groups, and the length of the carbon chain. The simplest representatives of the class of "normal" or basic acids are palmitic (16:0), stearic (18:0), lauric (12:0), myristic (14:0) and other acids, which in the sum of plant lipid acids are classified as minor components [2].

Fatty acids of individual organs and tissues biosynthesize or cumulate in the lipid fraction of cell membranes strictly specific polyene acids, which serve as a material for the formation of prostoglandiclike substances of natural genesis. Prostoglandins are essentially unsaturated higher hydroxylated fatty acids, with the number of carbon atoms in the chain 20, characterized by the presence of a pentacycle in position C8-11.

The more biologically valuable polyene higher fatty acids with four, five and six double bonds in an isolated position in plants are found in extremely low and sometimes trace amounts [3-4]. For the separation of fatty acids and their derivatives are used TCH on carriers containing silver ions, HPLC on liquid polar phases, HPLC on columns with reverse phase.

Usually fatty acids are separated after they are converted into methyl esters. However, in order to identify unknown fatty acids, it is more convenient to first divide them into groups with the same unsaturated and geometric configuration. This is done mainly by TCAs on carriers containing silver ions. This method is based on the fact that between the silver ions and double bonds in the hydrocarbon chain is a complex with a reversible transfer of charge, resulting in the fractionation of fatty acid ester mixtures in accordance with the number of double bonds in the molecule [1].

The separation of methyl esters of fatty acids is also carried out on silica gel columns impregnated with silver sulfamate. Elution, in this case, is carried out with a mixture of n-hexane-petroleic ester-diethyl ether-acetic acid (35:12:2:1) at 12-15°C. Sulfamic acid has no effect on lipid separation. Chromatography on silicon acid columns impregnated with silver nitrate is used to separate saturated and unsaturated fatty acids. The disadvantage of these columns is that they are short-lived.

GHX is the most effective method for separating complex mixtures of fatty acids; there are correlations between retention time and fatty acid structure. However, the presence of a large number of isomers in natural fatty acid mixtures does not allow for complete identification and separation of the compounds, so the mixtures are preliminarily chromatographed on carriers containing silver ions and then subjected to GHX analysis. For better identification of fatty acids, HDH in combination with mass spectrometry is used.

Mono-, di-, polyene fatty acids are generally separated into conventional HFA columns containing polar liquid phases (10% EGSS-X, 10% DEGS, 10% TGS) or some non-polar liquid phases (10% apieson L) at a constant temperature of about 200°C. Currently, the HPLC method is widely used to separate fatty acids. Since the detection by absorption in the UV range does not allow catching small amounts of fatty acids, the method of obtaining derivatives with strong absorption in the UV range is first used. Among these derivatives, phenacyl, nitrobenzoyl and 2-naphthacyl esters are the most commonly used. As sorbents are often used lychrosorb 10 RP-18 for elution with acetonitrile, l>bondapac C18, poreshilovat at elution with a mixture of methanol-water, acetonitrile, hibar-II RP-8 lychrosorb in combination with the elution mixture of tetrahydrofuranacetonitrile-water (3:67:30) [1, 5-7]. Extreme and unsaturated higher fatty acids play an important role in wildlife. They are part of the glycerides that form the basis of cell membranes, so they should be classified as biologically important compounds, and it has been established that not individual lipids, but the entire complex of plant lipids show greater biological activity, although each class of lipid fraction shows some biological activity.

Onsaturated aliphatic acids - linoleic, linolenoic and arachidonic acids, released from glycerides and exposed to oxidizing enzymes, give rise to successive reactions, which eventually lead to hydroxylated unsaturated compounds with high biological activity [8].

Higher polyunsaturated fatty acids have a positive effect on liver function, myocardium, fibrinolytic activity of blood, certain cytostatic and, especially, hypocholesterolemic action [8-12]. The physiological activity of polyunsaturated higher fatty acids increases with their unsaturatedness. It is known that the

VeStnik KQzfimU № I - 2020

hypocholesteroleic effect of arachidonic acid, which has four double bonds in an isolated position, is on average 3.5 times higher than that of linoleic acid, which has only two double bonds, and the similar activity of docosahexanic acid, with six isolated double bonds, is almost five times higher. Especially favorable effect on the function of blood vessels and liver, as well as on blood cholesterol level is manifested by the combined action of arachidonic and hexaenoic acids. This is what has led to the introduction of higher fatty acids into medical practice, the usual source of which are animal and vegetable fats [3, 8-10]. Essential fatty acids: oleic, linoleic, linolenic acids are not synthesized in the animal and human bodies, but come from food and are the initial product for the synthesis of arachidonic acid, the lack of which leads to a number of disorders: dermatosis, eczema, hair brittleness and hair loss, brittleness and delamination of the nails, decreased visual acuity, kidney function and other.

All life processes take place in the body with the direct participation of vitamins. Vitamins are part of more than 100 enzymes that trigger a huge number of reactions, help maintain the body's defenses, increase its resistance to the effects of various environmental factors, help adapt to a deteriorating environmental situation. Vitamins play a crucial role in maintaining immunity, i.e. they make our body more resistant to disease.

Vitamins play a crucial role in prolonging a healthy, fulfilling life. First of all vitamins are vital compounds, i.e. without them the normal work of the body is impossible. There is nothing to replace them. In the absence of vitamins or their deficiency in the diet necessarily develops a certain, and often repeated, the disease or violated health in general.

The aim of the work is to study amino and fatty acids, vitamins of plants of Dendrostellera stachyoides family of Thymelaeaceae. The object of investigation of above-ground parts of the plant collected in 2019 in Almaty region, near the Thymelaeaceae family. Kapchagai, phase of fruit bearing.

Results of the experiment and their discussion

Qualitative and quantitative determination of amino acids Method for determination of amino acids by GHX. 1 g of the analyzed substance, hydrolyzed in 5 ml 6H hydrochloric acid at 105 ° C for 24 hours in ampoules sealed under a jet of argon. The resulting hydrolyzate is evaporated three times dry on the rotary evaporator at 40-50 ° C and a pressure of 1 atmosphere. The resulting sludge is dissolved in 5 ml of sulfosalicylic acid. After centrifugation (1500 rpm) for 5 min supernatant is passed through a column with ion-exchange

Table 1 - Amino acids present in Dendrostellera stachyoides of the

resin Dowks 50, H-8, 200-400 mesh, with a speed of 1 drop per second. After that the resin is washed with 1-2 ml of deionized water and 2 ml of 0.5 N acetic acid; then the resin is washed to neutral pH deionized water.

For elution of amino acids from the column is passed through 3 ml 6 N solution NH4ON at a rate of 2 drops per second. Eluate is collected in a round bottom flask together with distilled water, which is used to wash the column to a neutral pH. Then the contents of the drying flask is evaporated on the rotary evaporator under pressure of 1 atm. and temperature 40-50 ° C. After adding to this flask 1 drop of freshly prepared 1.5% solution of SnCl2, 1 drop of 2.2dimethoxypropane and 1-2 ml of saturated hydrochloric acid propanol, it is heated to 110 ° C, for 20 minutes, and then the contents are again evaporated from the flask on the rotary evaporator.

At the next stage, 1 ml of freshly prepared acetic reagent (1 volume of acetic anhydride, 2 volumes of triethylamine, 5 volumes of acetone) is introduced into the flask and heated at 60 ° C for 1.5-2 minutes. Then the sample is evaporated again on the rotary evaporator dryer and added to the flask 2 ml of ethyl acetate and 1 ml of saturated NaCl solution. The content of the flask is thoroughly mixed and as 2 layers of liquids are clearly formed - take the upper (ethyl acetate) for gas chromatographic analysis, which is carried out on a gas-liquid chromatograph "Carlo Erba-4200" (Italy-USA). [3] Conditions of chromatography of amino acids.

- flame ionization detector temperature - 300°C

- evaporator temperature - 250°C

- initial column temperature - 110°C

- final column temperature - 250°C

- Speed of programming the column temperature: from 110°C to 185°C - 6°C in min; from 185°C to 250°C - 32°C in min. When the temperature of the column reaches 250 ° C, it must be maintained until the full yield of all amino acids.

To separate amino acids, a stainless steel column 400 by 3 mm filled with a polar mixture of 0.31 % carbovax 20 m, 0.28 % silur 5 SR and 0.06 % lexane on chromasorbe-W-120-140 mesh is used. The chromatograms are counted according to the external standard of Altex company[3].

Chromatograms of amino acids were obtained based on the analysis results. Using standard samples, 20 amino acids were identified, based on the exit time from the column. The area of each peak was directly proportional to the amount of the corresponding amino acid in the analysed mixture. Data are given in Table 1 and Figure 1.

melaeaceae family structure , %

Amino acids Content , %

D.stachyoides

Alanine 0.58

Glycine 0.198

Leucine 0.305

Isoleucine 0.28

Valine 0.190

Glutamate 2.26

Threonine 0.172

Proline 0.406

Methionine 0.038

Serine 0.293

Aspartate 1.15

Cystine 0.02

Oxyproline 0.001

Phenylalanine 0.29

Tyrosine 0.31

Histidine 0.165

Ornithine 0.001

Arginine 0.32

Lysine 0.244

Tryptophan 0.06

2,5

1,5

0,5

2,26

0,58

0,300,28 0,198 I 9

1,15

0,406

0,172

0,293

0,038 —i_

0,290,31 0,32

0,020,001 0 0,001

0,244 0,06

Alanine

Glycine

Leucine

Isoleucine

Valine

Glutamate

Threonine

Proline

Methionine

Serine

Aspartate

Cystine

Oxyproline

Phenylalanine

Tyrosine

Figure 1: Amino acid composition of Dendrostellera stachyoides of the Thymelaeaceae family in %

As you can see from the data in Table 1 and Figure 1. The dendrosteller species under study contains 20 amino acids, the quantitative content of which is dominated by glutamic and aspartic acid, proline and alanine.

Qualitative and quantitative determination of fatty acids

1 volume of the sample is extracted 20 times the volume of the mixture of chloroform and methanol (2:1) for 5 minutes. Then the content is filtered through a paper filter until a pure extract is obtained, which is evaporated in a round bottom flask on a rotary evaporator at bath temperature 30-40 0C drying. After that 10 ml of methanol and 2-3 drops of acetyl chloride are added to the flask and methylated at 60-700C in a special system for 30 minutes. Then methanol is evaporated on the rotary evaporator, and the sample is extracted from the cone 5 ml of hexane and injected into a gas chromatograph.

The conditions of chromatography:

> Injector temperature - 1880C,detector temperature -2300C,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

> Temperature furnace - 1880C, Analysis time -1 hour.

> Containing column: polyethylene glycoladipinate (20%) on target - 545. -Device - "Carlo Erbo-4200" (USA, Italy).

Fatty acid chromatograms were obtained from the analysis. Using standard samples, 8 fatty acids were identified, based on the exit time of the column. The area of each peak is directly proportional to the amount of corresponding fatty acid in the mixture under analysis. The data are given in Table 2 and Figure 2.

Table 2 - Fatty acid content

Acid chain length Name of acid Content, %

C14:0 Mirristine 1,5

C15:0 Pentadecan 2,2

C16:0 Palmitine 6,4

C16:1 Palmitaleinova 1,2

C18:0 Stearin 3,1

C18:1 Oleic 66,4

C18:2 Linoleum 18,5

C18:3 Linolenic 0,7

2

1

0

VeStnik KQzfimU № I - 2020

70 65 60 55 50 45 40 35 30 25 20 15 10 5 0

66,4

1 Myristic Acid Pentadecanoic acid Palmitic acid Palmitoleic acid Stearic acid Oleic acid Linoleic acid Linolenic acid

Figure 2 - Fat-acid composition of Dendrostellera stachyoides of the Thymelaeaceae family in %

As you can see from the data in Table 2 and Figure 2. The dendrosteller type under study contains 8 fatty acids, the quantitative content of which is dominated by oleic acid.

Qualitative and quantitative determination of vitamins A, E and C

Simultaneous fluoreometric determination of vitamin A and E concentrations.

To 0.2 ml(g) of the sample add 1 ml of bidistilled water and shake for 30 sec. Then add 1 ml of ethyl alcohol (96%) and shake again for 30 seconds. Then add 5 ml of hexane and repeat the shaking procedure again (remember that similar activities will be carried out with the standard). After the sample is centrifuged 10 min at 1500 rpm. For spectrometry, a clearly separated hexane layer (3 ml) is taken; it can be stored for 2 hours in tightly sealed tubes in a dark place.

Standard and control samples (blanks) are prepared in parallel with the prototype samples. In the standard samples, 0.2 ml of standard solution (tocopherol and retinol acetate in ethanol) are taken instead of the prototype sample. In control samples -water instead of prototype samples.

Spectrofluorimetry (Hitachi Spectrofluorimeter, Japan): tocopherol is performed at excitation wavelengths of 292 nm and 310 nm of fluorescence; retinol at 335,430 nm, respectively. The concentration of vitamins is determined by a formula: Fobr

Collection.........x Cst,

Fst

where: Fobr and Fst - the intensity of fluorination of the prototype and standard after calculating the fluorination of the control sample, Cst - the concentration of the substance in the working standard solution.

Determination of vitamin C in biological samples by the Fascher and Aybot method.

A sample of at least 0.3g(0.3ml) is taken in a centrifuge tube, the walls of which are covered with sodium lemon powder. After

Table 3 - Vitamin content

centrifugation of the sample for 30 min at 3000 rpm it is transferred to another tube and an equal amount of bidistilled water and a double amount of freshly prepared 5% metaphosphoric acid solution is added. Mix the protein sludge with a stick and centrifuge for 10 min at 3000 rpm. Supernatant in an amount (0.1-0.5 ml) is introduced into porcelain titration cuvettes (2 parallel samples) and titrated 0.001 n - 0.0005 n with a solution of sodium salt 2.6 dichlorophenolindophenol from a special micropipette with a capacity of 0.1 ml. In parallel, put the "blind" experience with 5% metaphosphoric acid solution and bidistilled water (1:1).

(a-v)X T X 0.088 X 4 X

100

The calculation is done according to formula X =.....................

-------------- , where

0,5

X - vitamin C content in the sample in mg, %, a - the amount of sodium salt solution of 2.6 dichlorophenolindophenol that went on titration in ml. i- amount of sodium salt solution of 2.6 dichlorophenolindophenol that has been titrated in "blind" experience in ml.

T is an amendment to the titre of sodium salt solution 2.6 dichlorophenolindophenol.

0.088 - coefficient for conversion of the obtained results into weight units (1 ml 0.001n p-ra of sodium salt 2.6 dichlorophenolindophenol corresponds to 0.088 mg ascorbic acid).

4 - sample breeding.

100 - recalculation factor for expressing the received data in %. 0.5 is the number of samples.

Data on the content of vitamins A, E and C were obtained from the analysis. The area of each peak is directly proportional to the amount of corresponding vitamin in the mixture under analysis. The data are given in Table 3 and Figure 3.

Name of Vitamin Content, %

Vitamin A 0,00012

Vitamin E 0,0013

Vitamin C 0,0035

0,004

0,0035

0,001

0,0005

Vitamin A

Vitamin E

Vitamin C

Figure 3 - Vitamin composition of Dendrostellera stachyoides of the Thymelaeaceae family, %.

Conclusions:

1) The chemical composition of the above-ground part of the plant Dendrostellera stachyoides of the Thymelaeaceae family has been studied for the first time.

In which group A vitamins were found in the amount of 0.0012%, group E in the amount of 0.0013% and group C in the amount of 0.0035%.

2) The amino acid composition of the plant Dendrostellera stachyoides of the Thymelaeaceae family, where 4 amino acids are present in sufficient quantities: glutamic and aspartic acids,

proline and alanine, was studied for the first time by the GHX method.

3) The fatty acid composition of plants of the Dendrostellera stachyoides family (Thymelaeaceae) was studied by the method of GHX, where it was found that oleic acid is the most abundant (66.4%).

4) At humidity of raw materials-7,38 % in a plant of a sort Dendrostellera stachyoides of family Thymelaeaceae organic acids make 1,52 %.

1. Baitenov M.S. Flora of Kazakhstan: - Almaty: FbMbiM, - 2001 -280 b.

2 Sokolov P.D. Vegetable resources of USSR: St.-Petersburg: Science, - 1993 l. - 352 b.

3 Pavlov N. V. Flora of Kazakhstan: - Almaty: Science, - 1965zh. - - 296 6.

4 Vitamins: tutorial / V.N. Kanyukov, A.D. Strekalovskaya, T.A. Saneyeva; Orenburg State University. - Orenburg: OGU, 2012. - - 108 c.

5 Temirkhanova G. A., Abdullina G. M., Kulagina I. G. Vitamin C: classical notions and new facts about mechanisms of biological action // Vyatka medical bulletin. - 2007 g. -Volume 3., No 4.

6 Shih E. B. Vitamins with antioxidant properties in prevention and treatment of acute respiratory infections in children (in Russian) // Problems of modern pediatrics. - - 2013. - vol. 12., No. 4. - beta 142-147.

REFERENCES

7 Chernauskene R. C., Varakjaviciene S., Gribauskas Z. Laboratory work, -1984 g. - №6, 6.362-365.

8 A. A. Pokrovsky Biochemical Methods of Research: Masseu: -1969 g. - 6.472-474.

9 Ognev S.I. Amino acids, peptides and proteins / Ognev S.I. -Moscow: Higher School, - 2005. - - 365 6.

10 Gulyaev V.N. Valuable Protein Source // Food Industry. -2008. - №12. - 6. 31-35.

11 Goryaeva M.I., Evdikova N.A. Handbook on gas-liquid chromatography: Almaty, - 1977 g.

12 Naumov S.P. Belki and their properties / Naumov S.P. - M.: Academic project, - 2005. - - 2986.

13 Mednikov B.M. Bioorganic chemistry / Mednikov B.M. -Moscow: Russia, - 2005. - - 305 6.

14 Adams R. Determination of aminoacids profiles biological by gas chromatography/J. Chromatography. - 1974. - Vol. 95., № 2 . - 6.188-212

Е.У. Датхаев, Г.А. Сейтимова, Г.Ш. Бурашева

эл-Фараби атындагы Казац улттыцуниверситетi, Алматы, Казацстан

DENDROSTELLERA STACHYOIDES ДЭРУМЕНД1К ЖЭНЕ КЫШКЫЛДЬЩ К¥РАМЫН ЗЕРТТЕУ

ТYЙiн: Ма;алада Тимелелi (Thymelaeaceae) тук;ымдас дендростеллерлер тектес 0сiмдiктiц жер усп б0лiгiндегi витаминдердiц, майлы жэне амин;ышк;ылдарыныц сапалы; курамы мен санды; кдаамын зерттеу нэтижелерi келтiрiлген. "Карло-Эрба-4200" (Италия-АКШ) газ

суйьщтьщты хроматографында 8 майлы жэне 20 амин;ышк;ылдары бар майлы жэне амин;ышк;ылдары аньщталды

ТYЙiндi свздер: Thymelaeaceae, Dendrostellera Stachyoides, аскорбин ;ышк;ылы, ретинол, токоферол.

Е.У. Датхаев, Г.А. Сейтимова, Г.Ш. Бурашева

Казахский национальный университет им. аль-Фараби, Алматы, Казахстан

АМИНО- И ЖИРНОКИСЛОТНЫЙ И ВИТАМИНЫЙ СОСТАВ РАСТЕНИЯ РОДА ДЕНДРОСТЕЛЛЕРЫ КОЛОСОВИДНОЙ (DENDROSTELLERA STACHYOIDES), СЕМЕЙСТВА ТИМЕЛЕЕВЫЕ (THYMELAEACEAE)

Резюме: В статье приводятся результаты исследования качественного состава и количественного содержания витаминов, жирных и аминокислот в надземной части растения рода дендростеллеры колосовидной (Dendrostellera stachyoides) семейства Тимелеевые (Thymelaeaceae). Обнаружены витамины группы А,Е и С. На

газо-жидкостном хроматографе «Карло-Эрба-4200» (Италия-США) определены жирно- и аминокислотные составы, которые представлены 8 жирно- и 20 аминокислотами

Ключевые слова: Thymelaeaceae, Dendrostellera Stachyoides, аскорбиновая кислота, ретинол, токоферол.

УДК 541.183; 661.183

А.М.Нуралы12, С.Х.Акназаров12, М.А.Нуралиев3, С.Н.Абдрешов1, А.С.Кожамжарова4

1 Казахский национальный университет им. аль-Фараби 2Научно-производственный технический центр «Жалын» 3Медицинский центр «Тимал» 4Казахский Национальный Медицинский Университет имени С.Д.Асфендиярова

ПОЛУЧЕНИЕ И ПОРИСТАЯ СТРУКТУРА УГЛЕРОДНЫХ ГЕМОСОРБЕНТОВ

В данной статье рассматриваются методы лечения, направленный на удаление из крови различных токсических продуктов и регуляцию гемостаза путем контакта крови с сорбентом вне организма и получение, пористая структура углеродных гемосорбентов.

Ключевые слова: Гемосорбция, адсорбция, абсорбция, гемосорбент, пористая структура.

Введение. Метод основан на двух свойствах сорбента:

• адсорбции (фиксация молекулы вещества на поверхности поглотителя);

• абсорбции (фиксация вещества в объеме поглотителя). Фиксация химических агентов происходит за счет образования ковалентных или ионных связей вещества с активными группами поглотителя.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Для гемосорбции используются сорбенты двух классов: неселективные, поглощающие из крови несколько веществ, и селективные, извлекающие вещества определенной структуры.

К первой группе относятся активированные угли, на поверхности которых собираются индолы, скатолы, гуанидиновые основания, жирные кислоты, билирубин, органические кислоты и т.д.

К селективным сорбентам относятся ионообменные смолы, способные удалять из организма ионы калия, аммоний, гаптоглобин, билирубин.

Фиксация химических агентов происходит за счет образования ковалентных или ионных связей вещества с активными группами поглотителя.

Гемосорбционный метод успешно используется для лечения таких осложнений диализа, как системная нейропатия, перикардит, сывороточный гепатит, способствует стойкому

исчезновению уремических пруритов, нормализации работы желудочно-кишечного тракта, исчезновению энцефалопатической симптоматики. Следует отметить, что в настоящее время для лечения многих из этих осложнений диализа широко применяется и энтеросорбция. Целью данной работы является совершенствование технологии получения углеродного гемосорбента. Для реализации цели были поставлены и решены следующие задачи:

1. Внести изменения в стандартную технологию получения угольных сорбентов;

2. Получить образцы при различных режимах;

3. Провести сравнительное исследование сорбционных свойств полученных образцов;

4. Оценить гемосовместимость лучшего образца.

Получение исходного сырья углеродного монолита включает в себя три стадии: химическую обработку (деминерализацию), приготовление массы УГ; выдавливание массы через экструдер.

Деминерализацию проводили следующим образом: Карбонизованый сорбент ЗРШ-1 помещается в емкость и заливается раствором азотной кислоты, при этом соотношение твердой фазы к жидкой должно быть 1:2.

i Надоели баннеры? Вы всегда можете отключить рекламу.