Научная статья на тему 'About a principle of the prevention of attacks in optical networks'

About a principle of the prevention of attacks in optical networks Текст научной статьи по специальности «Медицинские технологии»

CC BY
169
36
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОПТИЧЕСКИЕ ВОЛОКНА / ПОЛЯРИЗАЦИЯ / ОПТИЧЕСКИЙ УСИЛИТЕЛЬ / КВАНТОВАЯ КРИПТОГРАФИЯ

Аннотация научной статьи по медицинским технологиям, автор научной работы — Hasanov M.H., Islamov I.J., Maharramzadeh M.R., Imanguliyev A.G., Zamanova N.J.

It is important that the optical signals are safe and durable during the processing, transmission, acceptance of data for the delivery of large volumes of data transmitted over optical communication networks to users in a stable manner and without loss. At the same time, if there is the change in the number of photons in the optical network (photon theft), damage in the optical ports of different wavelength, the analysis of the parameters characterizing the indicators following the damages, and if necessary, the automatic transfer of those ports to other ports are actual issues. Although cryptographic methods are used in terms of information security, there is a need for a new, muti-channel, multi-functional, program-controlled monitoring system for other issues. This article analyzes attacks exposed by all optical networks and preventive measures taken against these attacks. Security problems arisen in all optical networks are explained using mathematical expressions and schemes. A new structure scheme of the control system for the determination of photon theft was developed in the transmission of information through channels with different wavelength in all optical networks. And also, the problem of application of quantum cryptography in all optical networks has been analyzed and in particular, a cryptographic structural scheme was proposed for the case of photon theft and its results were analyzed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Меры безопасности против атак в оптических сетях

Проблемы безопасности, созданные в оптических сетях объяснены с помощью математических выражений и схем. Разработана новая структурная схема системы управления для обнаружения фотореференций при передаче данных по каналам с различной длиной волны в оптических сетях. Также был проанализирован вопрос о применении квантовой криптографии в оптических сетях и предложена криптографическая структурная схема для случая кражи фотонов и проанализированы её результаты.

Текст научной работы на тему «About a principle of the prevention of attacks in optical networks»

ABOUT A PRINCIPLE OF THE PREVENTION OF ATTACKS

IN OPTICAL NETWORKS

DOI 10.24411/2072-8735-2018-10218

Hasanov Mehman Huseyn,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Islamov Islam Jamal,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Maharramzadeh Mahish Rahman,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Imanguliyev Azer Gulu,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Zamanova Nazaket Javanshir,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Gojayeva Shalala Faig,

Azerbaijan Technical University, Baku, Azerbaijan, [email protected] Keywords: optical fibers, polarization,

optical amplifier, quantum cryptography.

It is important that the optical signals are safe and durable during the processing, transmission, acceptance of data for the delivery of large volumes of data transmitted over optical communication networks to users in a stable manner and without loss. At the same time, if there is the change in the number of photons in the optical network (photon theft), damage in the optical ports of different wavelength, the analysis of the parameters characterizing the indicators following the damages, and if necessary, the automatic transfer of those ports to other ports are actual issues. Although cryptographic methods are used in terms of information security, there is a need for a new, muti-channel, multi- functional, program-controlled monitoring system for other issues. This article analyzes attacks exposed by all optical networks and preventive measures taken against these attacks. Security problems arisen in all optical networks are explained using mathematical expressions and schemes. A new structure scheme of the control system for the determination of photon theft was developed in the transmission of information through channels with different wavelength in all optical networks. And also, the problem of application of quantum cryptography in all optical networks has been analyzed and in particular, a cryptographic structural scheme was proposed for the case of photon theft and its results were analyzed.

Information about authors:

Hasanov Mehman Huseyn, Ph.D., Associate Professor. Head of the department "Telecommunication systems and information security" of the Azerbaijan Technical University, Baku, Azerbaijan

Islamov Islam Jamal, Ph.D., Associate Professor. He has been working at the department of "Electrodynamics and radio electronic means" of the faculty "Radio Engineering and Communication" of the Azerbaijan Technical University, Baku, Azerbaijanu

Maharramzadeh Mahish Rahman, head of laboratory the department "Telecommunication systems and information security" of the Azerbaijan Technical University, Baku, Azerbaijan

Imanguliyev Azer Gulu, doctoral student at Azerbaijan Technical University, Baku, Azerbaijan Zamanova Nazaket Javanshir, Azerbaijan Technical University, Baku, Azerbaijan Gojayeva Shalala Faig, doctoral student at Azerbaijan Technical University, Baku, Azerbaijan

Для цитирования:

Гасанов М.Г., Исламов И.Д., Магеррамзаде М.Р., Имангулиев А.Г., Заманова Н.Д., Годжаева Ш.Ф. Меры безопасности против атак в оптических сетях // T-Comm: Телекоммуникации и транспорт. 2019. Том 13. №1. С. 70-75.

For citation:

Hasanov M.H., Islamov I.J., Maharramzadeh M.R., Imanguliyev A.G., Zamanova N.J., Gojayeva S.F. (2019). About a principle of the prevention of attacks in optical networks T-Comm, vol. 13, no.1, pр. 70-75.

T

Introduction

In recent years, as there has been a need for high bandwidth concepts in the Internet environment, the high speed transmission of data in optical networks lias been raised. In practice, it lias been determined that all optical networks can serve at the transmission speed of 100 Gbit/sec. However, all optical networks now allow for a few Tbit/sec speeds and research is being conducted in this field. One of the major advantages of all optical networks is that it solves the problem of restoration of weakened signals as a result of shutting down within the network and provides transparency in data transmission 16,12].

Taking into account that the formation of all optical networks has a short history, it can be said that a limited number of research works have been conducted on the safety of all optical networks. Ensuring security in optical networks is basically implemented in two directions: in a physical and semantic manner. Physical security means the provision of the integrity and confidentiality of data. Semantic security means that methods for preventing interventions by knowing that an attacker has an opportunity to interfere with the transmission channel during data transmission [13, 15, 16].

All optical networks

Networks that are built with optical fiber technology and provide fast data transmission over optical devices across intersections through this technology are called all optical networks. All optical networks are divided into 2 major categories depending on the type of service they render:

!. TDM (Time Division Multiplexing),

2. WDM (Wavelength Division Multiplexing).

Mostly, WDM is used from these categories. The bandwidth of optical fiber in the wavelength compression method is divided into some wavelength channels of 10 Gbit/sec or other fast speed. Data transmission is carried out through WSS (Wavelength Selective Switching) [6].

Transmitted is provided certain wavelengths beforehand (User-1) for the transmission of date in full optical networks with ring-shaped topology. Fig. 1 illustrates an all-optical network with such topology:

Fig, 1. All optical network with ring-shaped topology

As can be seen form Fig. 1, User-1 sends date to 5 users (User-2, User-3, User-4, User-5, User-6) through channels with a

wavelength of ^ — X . The data is distributed over different

channels v ia the router (1). So, a part ol them passes through optical amplifier (2) through the channels of with a wavelength of A, - A* and transmitted to users with the help of converter (3). Date is transmitted to User-6 with the channel with a wavelength of A4 . It is transmitted to User-6 passing through the data compression unit (4) with the channel with a wavelength of

- /t„ •

Some features of all optical networks enable attackers to analyze traffics, reduce serv ice quality, or cancel services, listen to channels, ctc. Two important security problems can occur when exchaneing high-speed optical signals between the nodes [16, 19]:

1. Despite the fact that attacks are few and short-term, the number of data exposed to attack may be high.

2. Through the communication protocols between transmitter and receiver are good for the environments which they are designed, but they are not resistant to attacks that can lead to the elimination of service at remote distances.

It should be noted that in some cases, sending data in a transparent manner may cause security problems.

Security problems in optical networks

As mentioned above, all optical networks have high bandwidth arc high transmission speeds. And also, all optical networks eliminate the problem of restoration of the weakened signals as a result of shutting down of networks within the network and provides transparency in data transmission. The wavelength switches and optical amplifiers used to provide transparency sometimes cause security-related problems. These problems are divided into 3 parts [15-17]:

1, Crosstalk.

2, Amplified Spontaneous Emission Noise.

3, Gain competition.

Crosstalk

Elements of all optica! network are stronger and durable compared to electron and optoelectronic elements that perform the same functions. Crosstalk formed between the WDM channels can cause serious security problems. Crosstalk created by the attacker is intended to disrupt the connection between the transmitter and the receiver, rcduce the quality of the service, and so on. to achieve some goals. The most dangerous aspect of crosstalk is its ability to collect. Therefore, the effect of the combined crosstalks formed inside the optical network varies significantly from the effect of the crosstalk in a single knot.

Amplified Spontaneous Emission Noise

Let's assume the atomic system consisting of two energy levels as an example. Let's mark the energy levels with E] and E2 . When the pipe passes from one energy level to another according to the level of third postulate, the energy of the radiated quantum (photon energy) is equal to the modulus of energy differences [3|:

|£| = \E2 — | = h-fu

Here E - photon energy, h - Planck's constant, f,. - the frequency of the photon and its unit of measurement is 1/sec. The value of Planck's constant is h - 6.626075 ■ 10" C*sec,

and it expresses the relation between photon energy and frequency.

As we know the Physics course [5], emission is a process of transformation of high mechanical quantum particles' energy of low quantum panicles (photon energy), and as a result, light is formed [3]. The natural emission coefficient formed from E2 to

£■, was considered the characteristics of the system and r, ¡the

expresses natural emission duration. If there are atoms of jV, in

level E,, then the natural emission coefficient will equal to the

N

ratio of —i-. In this case, natural emission power is equal to the

N

expression of ¡¡. f\ ^ —b. Although the released photons have r2.\

the same energy as the optical signals, their diffusion directions and polarizations will be different. The amplifier also boost natural emissions, along with the optical signal as it evaluates natural emission radiation as another magnetic field at a frequency of h-f2i ■ As a result, ASE Noise - Amplified

Spontaneous Emission Noise are formed.

Gain competition

A large number of independent WDM channels within the optical liber share the limited flood of exciting photons. In this case, the channels with the higher gain in the output of the EDFA - Erbium Doped Fiber

Amplifier steal photons from the channels with lower gain. As a result of the gain competition, it is possible to generate a stronger signal.

Attacks to all optical networks

These attacks are divided into 3 parts:

1. Traffic analysis and listening to channels.

2. Cancellation of the service.

3. Reducing service quality.

Cancellation oflhe service and reduction ofQoS - Quality of Service should be determined at all weak points in the all optical network. High transmission speeds can cause a large number of data to be exposed to danger in a short lime, in some cases, delays in the delivery of the data sent to the receiver arc evaluated as their theft. At any moment, interventions included in the all optical network spread to different points of the network at high speeds. If an attacks on all points are not detected, incorrect operations can be performed by the NMS -Network Management System | i 4].

Cancellation of the service

The optical fibers emit light through dispersing and extinguishing with different wavelengths. Loss in optical fibrous cables are very low and have a linear feature. In normal operation, optical fibrous cables emit very little radiation. This feature is considered to be a quite good case compared to radiation in other environments. However, as with other cables, optical fiber cables are also ineffectual against physical interference. The services rendered to the receiver are canceled as a result of the fiber-optic cable interruption or other interference. As an example of physical interference with lower levels, light interference transmitted with optical fiber can be shown. In this case, the collapse of light within optical fibers or

outward orientation occurs. The contact established through a wavelength can be canceled by giving another light over that wavelength. It is quite difficult to identify the points in which such attacks occur on all optical networks.

There is the problem of crosstalk as a result of the breach of linear charactericries of optical fibers at far distances, effects of different wavelength signals (shutting down or amplification). The problem of crosstalk can be used by attacker for the purpose of attack [6, 12, 16J.

Erbium Doped Fiber Amplifiers reinforce the incoming signals and direct them to output. This feature of the amplifier creates the problem of gain competition. As a result, the attacker stole the user's photons. The problem of gain competition is a visual evidence that EDFA is affected by the attacks done at far distances. Also, sometimes the source refuses reserve resources as a result of the attack. The effect of this attack depends on the distance between the source of the attack and the amplifier, the configuration of the optical amplifier, the optical network architecture.

WSSs direct the signals transmitted with different wavelengths to output. Wavelength separator and compressing device are two key components of the WSS. To reduce the number of losses inside the WSS, one needs to put an optical amplifier at the input and output. WSSs have the levels of crosstalks. These levels depend on the WSS structure and its elements. In the currently used WSSs, the level of crosstalks ranges from -20 dB to -30 dB. An attacker can carry out attacks aimed at the cancellation of service using a crosstalk level. It is clear from the above-mentioned that though it is easy to avoid such attacks oil electrooptie networks, but avoiding such attacks on all optical networks is not an easy task.

To prevent attacks aimed at reducing service quality, you need to monitor all points of the all optical network. Prior to monitoring, information on gain competition, crosstalk, shutting down attacks, and so on. Should be delivered to all points in the network. The GMPLS (Generalized Multi-Protocol Label Switching) mechanism is used to implement this process. Regular updates are made to determine which wavelength is used at each point of the all optical network, and as a result, WSSs make different decisions based on the upgrades.

Light path is a virtual light path between VT (Virtual Transmitter) and VR (Virtual Receiver) knots VN (Virtual Node) VLP (Virtual Light Path). In order to analyze the quality of the service, the BER (Bit Error Rate) is inserted at the input and Output of each knot. By means of BLR, attacks caused to the reduction in the quality level of service and knot or knots in which they accur are determined.

Identification device called QoS Guard (Quality of Service Guard) is used to check the quality of the service. This device consists of two parts, the OPU (Optical Processing Unit) and QoSU (Quality of Service Unit). QoS Guard allocates a part of incoming signals for testing. These signals are scanned and evaluated at QoSU. The assessments are related to the reduction of the bit rate and the need for warning signs.

The goal ofQoS monitoring is to cheek the network activity in all the nodes oflhe all optical network and identify the causes of network malfunction. To this end. the following measures should be taken:

• Determination of the nodes where attacks resulted in reducing the sen.'ice quality and cancelling services occur;

• Accurate and rapid detection of loss of signals along the part of light;

• Determination of the source where the attack was done. Fig. 2 illustrates a new control system for determination of

photon theft at the all optical nodes:

Optical fiben

In Out Ail

\ [»oxJu) ^2?*»

tr.CHll Ml

[r. On A ] 2

Opttall GtMiii

[nOaiX.ii

tnOiii AID

optical flbai In Oui Aji ||

in Out JUl / mout^l

Opts.

Ilfltr

111 Out ÀJ1

it Out At: | OjitK-al

In Out X)) i

In Oj! À3 u

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

lin Out A t a

In ChM An _ X jj, i-.'l. -. A-nn

CMnpnnitfl'i sjrqcm

BER

himIVOT

Aistoni&ic

ri' M.':^ dcVM

quantum cryptography inside the optical switchboard for the determination and prevention of photon theft etc. are examples of advantages ofthe control system [9, 13, 11].

Quantum cryptography was used to control photon theft in the channels within the presented optical switch. The principle of operation of this method is as follows: let's assume two sides (transmitter and receiver) who want to create optical communication secretly and an attacker who wants to listen to the optical communication channel. As with other encryption methods, the attacker's capture of data in quantum cryptography also causes the information security to be detrimental [8,18, 20,22].

Let's mark the transmitted with M, and the receiver with N. Let's assume that M sends photons which have one out of lour polarizations to N, And also, let's think that these photons are outside (0° and 90°) and diagonal (45° and 135°) polarization. Both sides have crystal filter pairs and the ability to conduct photon exchange. Optical communication between sides is established through optical fiber channels. An agreement is reached in order to assess M and N filter pairs after the establishment of optical communication. Let's assume that filter pairs are as mentioned in Table 1 [24]:

Table 1

Filter pairs

Fig, 2. Structural scheme of all optical networks control system

The principle of operation of the control system is as follows: the condition of various wavelength signals, entering each input of the optical switch is constantly monitored by the automatic monitoring device. 1-^-5% incoming signals are given to the BER analyzer for analysis. Following the analysis of the signals, the initial values (standard) of signals arc compared with current values in the comparative system. The comparative system has a database that uses the survey to detect problems in the network. So, information on the following 4 problems that can be detected by the comparative system is given to automatic monitoring device:

1. There is damage to optical fibers.

2. Partial shutting down is formed in the optical fibers.

3. There are interferences to optical fibers and photon theft.

4. There arc no problems with transmission and reception of optical signals, that's, network condition is fully sustainable.

All optical network returns to normal operation mode after solving the problem arisen in accordance with the results of automatic monitoring device.

It should be noted the inputs of the optical switch can also implement the output function. A,,, A,,,..., A]„) e >1,', ,

(^21» ^22 ' ^23) ^ ^22 ' (^31' ^32 ' ^"33 ) ^ ^33 '"*'

(/t„,, Xn7, /L,,(1) e A'w relations are observed for incoming

and outgoing wavelength.

The presented control system have a number of advantages in comparison with other control systems. If damages are detected in optical ports, forwarding optic signals automatically to other ports and using reserve wavelength A,',, AU, K* <

Filters 0 1

+ — t

X / N

Algorithm BB84 and EPR-Ekert protocol are used for data transmission from M to N. The principle of operation of BR84 algorithm is as follows [10, 11, 23]: let's assume that M sends date described with the sequence of 110001001010 bits to N. N selects filter (+ or x) and obtains the photons with the polarization mentioned in Table 2. Thus, coinciding sequence of bits is accepted as a key. XOR operation is carried out over the key bits which are known to both sides with data bit for date to be secure [1, 2, 4, 7, 2!]. An example of BB84 algorithm is described in Table 2:

Table 2

Example of algorithm BB84

Data bits 1 1 0 0 0 1 0 0 ! 0 i 0

M's filter + + + X X + X + + X X X

Photonic polarization of M t : A—» / / t / *—* 1 / % /

N's filler + X X X + + + X X + X X

Photonic polarization of N t \ / / T t / \ % /

Attacker's

filter

Photonic polarization of attacker \ t / / / Î % \

Key 1 0 1 1 0

Error bits 1 0 0 0 1

M and N always check their sequences of bits in order to determine whether the attacker traces the channel. If the channel is traced, there is an error in the sequence of N's bits. In this

case, M and N regenerate keys and strive for an attacker to obtain as little information as possible about this key. Fig. 3 presents the structural scheme of the principle of operation of the quantum cryptography according to the current situation [1]:

f i"*

gki

sae

S3

s

PctusatMii

Kim .

■ I • o ■ I • o I s t

1 I \s \s

taierawiK-c

Mi

Fig. 3. Structural scheme of the principle operation of the quantum cryptography

Binding attacks

An attacker with the ability of physical intervention to optical fiber can change and obtain a part of signal. Binding attacks are used in order to increase the effect of service cancellation. Additionally, taking into account that the signals in the output of the optical amplifiers have very high speed, it is possible to implement the binding attacks here. Also, as there is gain competition between signals in some optical amplifiers, there are conditions for the implementation of attacks. When transmitting signals, the attacker closes a part of the channel and transmits another signal from this part. This signal is changed by the attacker and replaced by noise. Fig. 4 shows an example of the binding attack:

Aggrtsshe person

Modified signal

Original signal Fig. 4. Example of binding attack

Conclusion

A new structural scheme of the control system based on optical switchboard has been developed to identify threats in all optical networks, regularly monitor the network's operating status, eliminate threats, and prevent photon theft.

Four different problems that can occur in an all optical network have been analyzed with the help of the control system. A structural scheme of the principle of operation of quantum cryptography is provided for the prevention of photon theft.

The quail mm cryptography used to detect photon theft was firstly described in the composition of the optical switch.

References

1. Nuri Ural, Omar Orench. (2018). Encryption and decryption methods. Deniz Priming Bindery Sea. 99 p.

2. Weinberg Steven: Quantum Field Theory. Vol. 3. Supersymmetry. Fizmailit. 2018. 456 p.

3. Kraynov V.P., Smirnov B.M. (2015). Quantum theory of atomic particle radiation. Tutorial. ID Intellect. 296 p.

4. Weinberg Steven, (2015). Quantum field theory. Vol. 2. Modem applications Fizmatlit. 528 p.

5. Landau L.D., Kitaygorodsky A,I. (2017), Photon and core. Light source. Ripol-Classic. 330 p.

6. Sklyarov O.K. (2018). Fiber-optic networks and communication systems. Study Guide, 3rd cd, Lan. 268 p.

7. Elliott C. (2004). Quantum cryptography. Security t£ Privacy Magazine. IEEE. Vol. 2. Issue: 4, July-Aug, 2004, pp. 57-61.

8. Dolgov V.A., Anisimov V.V. (2008). Cryptographic methods of information security. DVGUPS. 155 p.

9. Gaivorovskaya G.S., Ryabtsov A.B. (2011). Features of the use of optical switches in modem in formal ion networks. Applicable Information Models. Sofia. ¡THEA. No 22. pp. 169-181.

10. Foniichev V.M. (2013). Discrete Mathematics and Cryptology: A Course of Lectures. Ed, N.D. Podufalov. Moscow; Dialogue - MEPl. 397 p.

11. Stebila D„ Mo sua M„ Lutkenhaus N. (2010). The Case for Quantum Key Distribution", Lecture Notes of the Institute for Computer Sciences. Social Informatics and Telecommunications Engineering, vol. 36. pp. 2S3-296. Springer. DOI: 10.1007/978-3-642-11731-2 35.

12. Maharramov V.A., llasanov M.G. (2017), Principles of dataflow commutation of optical networks. International Journal of Research-GRANTHAALA YAH. Vol.5 (lss. 12): December, 2017, pp. 348-356

13. Dmitriev A.L. (2007). Optical Information Transmission Systems. Tutorial. SPb.: SPbGUlTMO. 96 p.

14. Ubaydullaev R.R, (2001). Fiber Optic Networks. Moscow: Eco-Trend. 266 p.

15. Melard M„ Marquis D„ Barry R.A., Finn S.G. (1997). Security issues in all optical networks. IEEE Network, vol. 11. issue 3, May-June 1997. pp. 42-48,

16. Rejeb R., Pavlosoglou I., Leeson M.S., Green R.J, (2003). Securing all optical networks. Transparent Optical Networks. Proceedings of2003 5th International Conference, vol I, 29 June-3 July 2003, pp.87-90.

17. Machuca M., Tomkos 1. (2003). Failure detection for secure optical networks. Transparent Optical Networks, Proceedings of 2003 y Internationa! Conference, vol 1, 29 June-3 July 2003, pp.70-75.

18. Moloikov S.N, (2006). Quantum cryptography and V.A, Kotelnikov theorems on one-time keys and on readings. UFN, 176: 7 (2006), pp. 777-788.

19. Molotkov S.N. (2004). On the integration of quantum systems of classified communication (quantum cryptography) into fiber-optic telecommunication systems. Letters to JETP. Vol. 79, pp. 691 -704.

20. Rumyantsev K.E., Golubchikov D.M. (2009). Quantum communication and cryptography: Tutorial, Taganrog: TT1 SFU Publishing House. 122 p.

21. Zadorin A.S., Makhorin D.A. (2014), Model of the system of quantum key distribution over optical fiber with time coding. Journal "Reports of Tomsk State University of Control Systems and Radio Electronics"No. 3 (33), pp. 85-89.

22. Kilin S.Ya., Khoroshko D.B., Nizovtsev A.P. (2008). Quantum cryptography: ideas and practice. 391 p.

23. Molotkov S.N. (2008). On the limiting possibilities of the quantum distribution of keys with the control of statistics of a nonphoton source. Letters to JETP, 87:10(2008), 674-679 p.

24. Imre B„ Balazh F, (2008). Quantum computing and connection. Engineering approach. Trans, from English by cd. V.V. Samartseva. Moscow: FiZMATLlT. 320 p.

МЕРЫ БЕЗОПАСНОСТИ ПРОТИВ АТАК В ОПТИЧЕСКИХ СЕТЯХ

Гасанов Мехман Гусейн, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected] Исламов Ислам Джамал, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected] Магеррамзаде Махиш Рахман, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected] Имангулиев Азер Гулу, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected] Заманова Назакет Джаваншир, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected] Годжаева Шелале Фаик, Азербайджанский Технический Университет, Баку, Азербайджан, [email protected]

Проблемы безопасности, созданные в оптических сетях объяснены с помощью математических выражений и схем. Разработана новая структурная схема системы управления для обнаружения фотореференций при передаче данных по каналам с различной длиной волны в оптических сетях. Также был проанализирован вопрос о применении квантовой криптографии в оптических сетях и предложена криптографическая структурная схема для случая кражи фотонов и проанализированы её результаты.

Ключевые слова: оптические волокна, поляризация, оптический усилитель, квантовая криптография.

1. Нури Урал, Омар Оренч. Методы шифрования и дешифрования. Дениз Принтинг Бинди Море, 2018. 99 с.

2. Вайнберг Стивен. Квантовая теория поля. Том 3. Суперсимметрия. Физматлит, 2018. 456 с.

3. Крайнов В.П.ч, Смирнов Б.М. Квантовая теория излучения атомных частиц. Руководство. ИД Интеллект, 2015. 296 с.

4. Вайнберг Стивен. Квантовая теория поля. Том 2. Современные приложения Физматлит, 2015. 528 с.

5. Ландау Л.Д., Китайгородский А.И. Фотон и ядро. Источник света. Рипол-Классик, 2017. 330 р.

6. Скляров О.К. Волоконно-оптические сети и системы связи. Учебное пособие, 3-е изд., Lan, 2018. 268 с.

7. Эллиот C. Квантовая криптография // Security & Privacy, IEEE, Vol. 2, выпуск 4, июль-август 2004. С. 57-61.

8. Долгов В.А., Анисимов В.В. Криптографические методы защиты информации. ДВГУПС, 2008. 155 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Гайворовская Г.С., Рябцов А.Б. Особенности использования оптических переключателей в современных информационных сетях. Применимые информационные модели. София, 2011. № 22. С. 169-181.

10. Фомичев В.М. Дискретная математика и криптология: курс лекций / под ред. Н. Д. Подуфалов. М.: Диалог - МИФИ, 2013. 397 с.

11. Стебила Д., Моска М, Люткенхаус Н. Дело о квантовом распределении ключей. Конспект лекций Института компьютерных наук, социальной информатики и телекоммуникаций. Том 36. С. 283-296. Springer, 2010. DOI: 10.1007 / 978-3-642-11731-2_35.

12. Магаррамов В.А., Гасанов М.Г. Принципы коммутации потоков данных оптических сетей // Международный журнал исследований-GRANTHAALAYAH. Том 5 (Выпуск.12): декабрь 2017 г. С. 348-356.

13. Дмитриев А.Л. Оптические системы передачи информации / Учебное пособие. СПб, СПбГУИТМО, 2007. 96 с.

14. Убайдуллаев Р.Р. Волоконно-оптические сети. М.: Эко-Тренд, 2001. 266 с.

15. Мелард М, Маркис Д., Барри Р.А., Финн С.Г. Проблемы безопасности во всех оптических сетях // IEEE Network, vol. 11, выпуск 3, май-июнь

16. Режеб Р., Павлосоглу И., Лисон М.С., Грин Р.Дж. Защита всех оптических сетей. Прозрачные оптические сети, 2003. Труды 2003 г. 5-я Международная конференция, том 1, 29 июня - 3 июля 2003. С. 87-90.

17. Мачука М., Томкос И. Обнаружение неисправностей для защищенных оптических сетей. Прозрачные оптические сети, 2003. Материалы 2003 г. 5-я Международная конференция, том 1, 29 июня - 3 июля 2003 г. уо!.1. С. 70-75.

18. Молотков С.Н. Квантовая криптография и теоремы В. А. Котельникова об одноразовых ключах и о чтениях // УФН, 176: 7 (2006). С. 777-788.

19. Молотков С.Н. Об интеграции квантовых систем секретной связи (квантовой криптографии) в волоконно-оптические телекоммуникационные системы // Письма в ]ЕТР. 2004. Т. 79. С. 691-704.

20. Румянцев К.Е., Голубчиков Д.М. Квантовая связь и криптография: Учебное пособие. Таганрог: Изд-во ТТИ ЮФУ, 2009. 122 с.

21. Задорин А.С., Махорин Д.А. Модель системы распределения квантовых ключей по оптоволокну с временным кодированием // Доклады Томского государственного университета систем управления и радиоэлектроники. № 3 (33), 2014. С. 85-89.

22. Килин С.Я., Хорошко Д.Б., Низовцев А.П. Квантовая криптография: идеи и практика. 2008. 391 с.

23. Молотков С.Н. О предельных возможностях квантового распределения ключей с контролем статистики нефотонного источника // Письма в ]ЕТР, 87:10 (2008). С. 674-679.

24. Имре Б., Балаж Ф. Квантовые вычисления и связь. Инженерный подход / Пер. с англ. изд. В.В. Самарцева. М .: ФИЗМАТЛИТ, 2008. 320 с. Информация об авторах

Гасанов Мехман Гусейн, к.т.н., доцент, заведующий кафедрой "Телекоммуникационные системы и информационная безопасность" Азербайджанского Технического Университета, Баку, Азербайджан

Исламов Ислам Джамал, к.т.н., доцент. Работал на кафедре "Электродинамика и радиоэлектронные средства" факультета "Радиотехника и связь" Азербайджанского Технического Университета, Баку, Азербайджан

Магеррамзаде Махиш Рахман, заведующий лабораторией кафедры "Телекоммуникационные системы и информационная безопасность" Азербайджанского Технического Университета, Баку, Азербайджан

Имангулиев Азер Гулу, докторант в Азербайджанском Техническом Университете, Баку, Азербайджанг Заманова Назакет Джаваншир, докторант в Азербайджанском Техническом Университете, Баку, Азербайджан Годжаева Шелале Фаик, докторант в Азербайджанском Техническом Университете, Баку, Азербайджан

Аннотация

Литература

1997. С. 42-48.

i Надоели баннеры? Вы всегда можете отключить рекламу.