Научная статья на тему 'A STUDY ON INTEGRAL TRANSFORMS OF THE GENERALIZED LOMMEL-WRIGHT FUNCTION'

A STUDY ON INTEGRAL TRANSFORMS OF THE GENERALIZED LOMMEL-WRIGHT FUNCTION Текст научной статьи по специальности «Математика»

CC BY
60
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Vojnotehnički glasnik
Scopus
Область наук
Ключевые слова
GENERALIZED LOMMEL-WRIGHT FUNCTIONS J(Z) / HANKEL TRANS FORM / K-TRANSFORM / WRIGHT FUNCTION / WHITTAKER FUNCTION

Аннотация научной статьи по математике, автор научной работы — Khan Mohammad Saeed, Haq Sirazul, Khan Moharram Ali, Fabiano Nicola

Introduction/purpose: The aim of this article is to establish integral trans forms of the generalized Lommel-Wright function. Methods: These transforms are expressed in terms of the Wright Hypergeometric function. Results: Integrals involving the trigonometric, generalized Bessel function and the Struve functions are obtained. Conclusions: Various interesting transforms as the consequence of this method are obtained.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A STUDY ON INTEGRAL TRANSFORMS OF THE GENERALIZED LOMMEL-WRIGHT FUNCTION»

ОРИГИНАЛНИ НАУЧНИ РАДОВИ ОРИГИНАЛЬНЫЕ НАУЧНЫЕ СТАТЬИ

ORIGINAL SCIENTIFIC PAPERS S

CM

cn CD <M

A STUDY ON INTEGRAL TRANSFORMS OF THE GENERALIZED LOMMEL-WRIGHT FUNCTION

Mohammad Saeed Khana, Sirazul Haqb,

Moharram Ali Khanc, Nicola Fabianod |

Sefako Makgatho Health Sciences University, q

DOI: 10.5937/vojtehg70-36402;https://doi.org/10.5937/vojtehg70-36402 FIELD: Mathematics

ARTICLE TYPE: Original scientific paper Abstract:

Introduction/purpose: The aim of this article is to establish integral transforms of the generalized Lommel-Wright function.

Methods: These transforms are expressed in terms of the Wright Hyper-geometric function.

Results: Integrals involving the trigonometric, generalized Bessel function and the Struve functions are obtained.

о t3

<u

Department of Mathematics and Applied Mathematics,

Ga-Rankuwa, Republic of South Africa,

e-mail: [email protected], ro

ORCID iD: ©https://orcid.org/0000-0003-0216-241X b <u

b J. S. University, Department of Applied Science, ^

Shikohabad, Ferozabad, U.P., Republic of India,

e-mail: [email protected], o

ORCID iD: ©https://orcid.org/0000-0001-9297-2445

c Umaru Musa Yaradua University, o

Department of Mathematics and Statistics,

Katsina, Federal Republic of Nigeria,

e-mail: [email protected],

ORCID iD: ©https://orcid.org/0000-0002-5563-4743

d University of Belgrade, "Vinca" Institute of Nuclear Sciences -Institute of National Importance for the Republic of Serbia, Belgrade, Republic of Serbia,

e-mail: [email protected], corresponding author, w

ORCID iD: ©https://orcid.org/0000-0003-1645-2071

>

ro <u СЯ S

с го .с

C\l <D

O

"(5 >

CN CM o CM

0£ yy

0£ ZD O o

-J

<

o

X

o

LU

I—

>-

Q1 <

CD

S2 ■O

x

LU I—

o

o

Conclusions: Various interesting transforms as the consequence of this method are obtained.

Key words: Generalized Lommel-Wright functions J(z), Hankel transform, K-transform, Wright function, Whittaker function.

Introduction

The transform defined by the following integral equation

r

Rv{f (x);p} = g(p, v) = (px)l/2Kv(px)f (x)dx (1)

J 0

is called the k transform with p as a complex parameter and Kv(px) is called the Modified Bessel function of the third kind or the Macdonald function, see (Mathai et al, 2010, p.53). The Hankel transform of a function f (x), denoted by g(p, v) is defined as

f+m

g(p, v) = (px)1/2Jv(px)f (x)dx, p> 0 J 0

(2)

where Jv(px) is called the Bessel-Maitland function or the Maitland-Bessel function (Mathai et al, 2010, p.22 and p.56).

The Wright hypergeometric function defined by the series (Srivastava & Manocha, 1984):

p^q

(ai,Ai), .., (ap,Ap);

L (Pl,Bl).., (Pq ,Bq )

n r(aj + Ajk)zk

Ej=i_

_q '

k=0 Û r(Pj + Bjk)k! j=i

(3)

where the coefficients A1,....Ap and Bi,....Bq are positive real numbers such that

qp

(4)

1 + E Bj -E a ^0' j=1 j=1

can be slightly generalized (3) as given below.

p^q

(ai, 1), .., (ap, 1); (Pi, 1)..., (Pq, 1)

n r(aj) j=i

n r(Pj) j=i

pFq

ai,.., ap;

Pi,...,Pq

(5)

264

z

z

z

where pFq is the generalized hypergeometric function defined by (Srivas-tava & Manocha, 1984; Rainville, 1960)

F

p Fq

ßl,..,ßq

£

k=0

(ai)n,(ap)nzn (ßi)n,...., (ßq )n n!

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

pFq (ai,..., ap ; ßi, ....,ßq ; z),

(6)

2

3 6

2.

p. p

io cti

where (A)„ is the well known Pochhammer symbol (Srivastava & Manocha, 1984).

The series representation of the generalized Lommel Wright function as (Kachhia & Prajapati, 2016);

4;m(z) = E

k=0

(-i)k r(k + i)( § )2k+v+2A r(A + k + 1)mr(v + kß + A + 1)k! '

(z £ C/(-œ, 0], m £ N, v,A £ C,ß> 0).

(7)

Also, we have the following relations of the generalized Lommel Wright functions with trigonometric functions and the generalized Bessel function $V,\(Z) and the Struve function as follows:

e m m o

-j

d e

iz ral

er

n

e g

o

s

rm or

f s

g e

JilA0(z)= 'nzSin(z)

J l\\o0(z) = \ — cos(z) V nz

-1/2,0(

(8)

(9)

y

d u t

s

A,

al

t e S.

Jßv'l (z) = KAz)

(10)

a h K

JV,'l/2(z) = Hv (z) •

(11)

The following known results of Mathai and Saxena (Mathai & Saxena, 1973):

r+<x

/ x5-1 Jn (ax)dx = 0

25-la-5 r( 5++n )

r(i +— )

, n(n) < K(5) < 3/2, a> 0 (12)

265

z

CM r+x>

0 / xS-1Kv(ax)dx = 2S-2a-Sr(S ± n)/2, (13)

J 0

o

P xi~' exp(-at)K„(ax)dx = (2a)^-T±(;)+/21/2) • (14)

- x- exp(1/2 xW„,(x)d* = - S), (15)

IT ZD O o

< O

x i xS-1 exp(-1/2 x)M(n,m)(x)dx

o Jo

LU

■ r(2m + 1)r(m + S + 1/2)r(n - S) (16)

dc r(m - S + 1/2)r(m + n + 1/2) ' (

neralizations and cases of the Lommel-Wright function have been investigated. For details, see (Paneva-Konovska, 2007; Menaria et

al, 2016; Mondal & Nisar, 2017; Srivastava & Daoust, 1969; Kiryakova, 2000).

§ Integral formulas involving the Lommel-Wright functions have been de-

ep veloped by many authors. See e.g., (Choi & Agarwal, 2013; Choi et al, 2014; Jain et al, 2016; Chaurasia & Pandey, 2010). In this sequel, here, we aim at establishing a certain new generalized integral formula involving the generalized Lommel-Wright function J^xZ interesting integral formulas which are derived as special cases.

Main results

This section deals with the evaluation of integrals formulas involving the Lommel-Wright function defined in (7) and the integrals involving the product of the Bessel function of first kind, the Kelvin's function and Whittaker function (Whittaker & Watson, 2013) with the generalized Lommel-Wright function.

Theorem 1. Let z e C/(-rc>, 0], m e N, v,A e C, i > 0. Then the Hankel transform of the generalized Lommel-Wright function defined in (7) is given by

1 ( b \ v+2A ( 2 ^ P+W(U+2X)

r° zp-ijn ww^ vz(a)

2^m+2

2\2j \a

(1, 1), ( V+P+Wv+2WX (A + 1,1),..., (A + 1,1), (v + A + 1,i), ((), -w) - b2 )( 4 x w ]

(18)

Proof. On using (7) in the integrand of (1) which is verified by uniform convergence of the involved series under the given conditions, we get

£

n=0

/ zp-1 Jv (az)J^m(bzW )dz = Jo '

(-1)nr(n + 1)(b/2)2n+V+2A f+« zP+w{2n+v+2X)-1

r(A + n + 1)mr(v + A + ni + 1)n! Jo

Jn (az)dz.

Now using (12) in the above equation we get

p+w(v+2A)

zp-1 J(azJm(bzw)dz = (1/2) (Vy ^2/a) r(n + 1)r(n + p + wv + 2wA + 2wn)/2^ - b2/^ ^4/a2^

E

n=o

r(A + n + 1)mr(v + A + ni + 1)r(2 + n - p - wv - 2wA - 2wn)/2 n!

1 ( b\ v+2X /^ p+w(v+2A)

2W W

- I X

(1,1)7 n+p+wv+2wX ,w

(A + 1,1),(A + 1,1), (v + A + 1,i), ((^v-^^2^ , -w^j ;

(W

(19)

Theorem 2. Let z e C/(-&>, 0], m e N, v, A e C,i > 0. Then the K-Transform of the generalized Lommel-Wright function defined in (7) is given

2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2

3 6

2.

p. p

io cti

e m m o L d

e ral

er

n

e g

o

s

rm or

f s

g e

>

d t s

<

al

t e

a h

267

X

CM <u

by

o

"o

>

cn

CM o CM

0£ yy

0£ ZD

o o

-J

<

o z

X

o

LU

I—

>-

CC <

CD

S2 >o

X LU I—

o

o

f+m 1 / b\ v+2x /

I zp-1Kv (azjm(bzw )dz = 4(jj

2^m+1

(1,1), (p+wv+22wX±n,w)

1 ( b\ V+2X ( 2\ P+W(v+2X)

4 V 2 / \a) '

4

(A + 1,1), •••, (A + 1,1), (v + A + 1,x); V 4

(20)

Proof. On using (7) in the integrand of (2) which is verified by uniform convergence of the involved series under the given conditions, we get

f+<X

/ Zp-1KV (az)4m(bzw )dz =

Jo '

JO

~ (-lyre+l)(b/2)^»> zP+w^+v+2x)-iKv(az)dz.

E

n=0

r(A + n + 1)"T(v + A + nf + 1)n! ,/0

Now using (13) in the above equation we get

v+2X ( \ p+w(v+2A)

zp-1Kv(azjm(bzw)dz = (1/4) (Vy ^2/a)

r(n + 1)r(p + wv + 2wA ± n +

E-

n=0

(\n/ \ nw

- b2/4) (4/a2)

r(A + n + 1)mr(v + A + nf + 1)n!

1 ( b\ v+2X f 2 \ P+w(v+2X)

= w

(1, 1), ( P+wv+22wX±V , w); / -tf W 4 X1

4 ) \a2)

+2wx±n, w); _ (A + 1,1), •••, (A + 1,1), (v + A + 1

(21)

Theorem 3. Let z e C/(-rc>, 0], m e N, v, A e C,x > 0. Then the K-Transform of the generalized Lommel-Wright function defined in (7) is given by

f+m

/ zp-1 exp(-az)Kn(az)J^m(b zw)dz =

Jo '

2av^ b/2

v+2X

(2a)P+w(v+2X)

2^m+2

(A + 1,1),

(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1), (v + A + 1,f), (p + wv + 2wA + 1/2,2w);

x

o

X

\4(4a2)_ J

r+<x

/ zp-1 exp(—az)K (az)J^m(bzw )dz J 0 '

(—1)nr(n + 1)(b/2)2n+v+2A

Now using (14) in the above equation we get

f+™ 2a^(b/2

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0 z" eM—az)Kv(az)-vm(bzw)dz _

g r(n + 1)r(p + wv + 2w\ ± n + 2wn)()

n=0

r(A + n + 1)mr(v + A + nf + 1)(p + wv + 2wA + 1/2, 2w)n!

2^m+2

_ 2a^(b/2)v+2A

_ (2a)P+w(v+2A) x

(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1),..., (A + 1,1), (v + A + 1,f), (p + wv + 2wA + 1/2,2w);

\4(4a2)w )

(24)

3

^m+1

(a)P+e(»+2X)r(1/2 ± a — n) (1,1), (1/2 ± a + p + vd + 2A9, 2d), (—n — p — vd — 2dA, —2d); (A + 1,1),..., (A + 1,1), (v + A + 1,f);

rn CO

<m

S± CP

Proof. On using (7) in the integrand of (3) which is verified by uniform convergence of the involved series under the given conditions, we get o

o

<u

^r(A + n + 1)mr(v + A + nx + 1)n!" |

n=0 t

o

zP+_(2n+v+2\)-1 exp(—az)Kv (az)dz. (23) |

re

<D c <u

<u

>

"D

(0 <

<u 00

ro

Theorem 4. Let z e C/(—<x, 0], m e N, v,A e C,x > 0. Then the pro- ^ duct of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by

( \ v+2\

rw/2 l zp-1 exp(az/2)WVa(az)J^m(w zd)dz _ +^+2^-

(M <D

O

"(5 >

cn

(M o (M

yy

0£ ZD

o o

-J

<

o

X O LU

I—

>-

Q1 <

CD

S2 >0

x

LU I—

O

o

Ua2)0)

(25)

Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ x ^ and using (7) in the integrand of (4) which is verified by uniform convergence of the involved series under the given conditions, we get

r+<x

/ zp-1 exp(az/2)Wv,a (az)J^m(wz0 )dz = Jo ' '

v+2X

w/2 ) +(X

E

(ay+C+M) n=0

f

r(A + n + 1)mr(v + A + np + 1)n! xp+e(2n+u+2X)-1 exp(x/2)Wv,a(x)dx.

Now using (15) in the above equation we get

r(w /2) v+2X

l zp-1 eM.az/2)Wn,a(az)Jí;:r(wz°)dz = ay+e{vUT{1/2 ±

o

E

n=0 L

(a)P+e(v+2X'Y(1/2 ± a - n) r(n + 1)r(1/2 ± a + p + Ov + 20A + 26 n)r(-n - p - Ov - 20A - 29 n)

G(a2)0

r(A + n + 1)mr(v + A + np + 1)n!

v+2X

2 \ nl 2)0

w/2

(a)p+0(v+2X)r(1/2 ± a - n)

(1,1), (1/2 ± a + p + Ov + 2OA, 29), (-n - p - vO - 2OA, -29); (A + 1,1),..., (A + 1,1), (v + A + 1, p); ,2

(26)

Ua2)0)

Theorem 5. Let z e C/(-rc>, 0], m e N, v,X e C,p > 0. Then the product of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by

r

/ z— exp(-az/2)MVa(az)J^m(w ze)dz = Jo ' '

270

X

o

X

X

/ \ v+2X

(w/2\ (1/a)9(v+2X)r(2a + 1)

_-—-x

(a)^r(a + n + 1/2)

(1,1), (a + p + 1/2 + vd + 2Xd, 2d), (n - p - vd - 2d\, -2d); (X + 1,1),..., (A + 1,1), (v + A + 1, p), (a - p - dv - 2dX + 1/2, -2d)

V4(a2)V

(27)

Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ +œ, x ^ and using (7) in the integrand of (5) which is verified by uniform convergence of the involved series under the given conditions, we get

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

f+m

/ zp-1 exp(-az/2)Mv , a (azJ m(wz9 )dz = J o ' '

w/2

v+2X

(1/a)9(v+2X)

(a)p

£

n=0 /■+<x

r(X + n + 1)mr(v + X + np + 1)n! xP+e(2n+v+2x)-1 exp(-x/2)Mn , a(x)dx.

Now using (16) in the above equation we get

E

n=0

r+<x

/ zp-1 exp(-az/2)Mv , a(az)J^ f(wze )dz = 0

(w/2)v+2X(1/a)e(v+2XX)Y(2a + 1) (a)PT(a + n + 1/2) X

r(n + 1)r(a + p + dv + 2dX + 1/2 + 2d n)r(n - p - dv - 2dX - 2d n) r(X + n + 1)mr(v + X + up + 1)r(a - p - dv - 2dX - 2nd + 1/2)n!

( )n] = (w/2) U(a2)V

v+2X

(1/a)9(v+2X)r(2a + 1)

(a)pr(a + n + 1/2) (1,1), (a + p + 1/2 + vd + 2Xd, 2d), (n - p - vd - 2dX, -2d); (X + 1,1),..., (X + 1,1), (v + X + 1, p), (a - p - dv - 2dX + 1/2, -2d)

G(a2)9)

(28)

cn CD <M

O tj

<U

E E

o -j

~o

<u

N

1Ë <D c <u

o tn E o

M—

(0

<u

>

"D

(0 <

m

<u 00

ro

-C

X

0

X

(M <u

o

"(5 >

cn

(M o (M

< o

X

O

CD

S2 >0

Theorem 6. Let z e C/(-rc>, 0], m e N, v,\ e C,p > 0. Then the product of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by

CC /X V+2X

E w/2 (1/a)0(v+2X

O zp-1 Wv,a (az) W-n,a (az) J^m(w z0)dz = ±-J -

0 Jo ' (a)p

0

- (1,1), (p+0(u+2X)+1 ± a, O), (p + 9(v + 2A) + 1,29);

(A + 1,1),..., (A + 1,1), (v + A + 1, p), 2(1 + p+0(v2+2X) ± n, O)

3^m+2

* ( -w2 \

| W2)0)

2

(29)

Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ x ^ and using (7) in the integrand of (6) which is verified by uniform convergence of the involved series under the given conditions, we get

( \ v+2\

w/2 (1/a)°(v+2X) J zp-1W-v, a(az)Wv, a(az)J^ m(wzd )dz = ^-J--^-x

x Jo

§ r(n + 4-W)

O E

n=o

r(A + n + 1)mr(v + A + np + 1)n!

r+œ

/ Xp+d(2n+V+2X)-1W-n,a(x)Wv,a(x)dx. o

Now using (17) in the above equation we get

f+™ p-(w/2)v+2X(1/a)0(v+2X)

zp-1W-n,a(az)Wn,a(az)Jp;'Xm(wze )dz =

(a)p

r(n + 1)r(p+0(v+2¡X+2n+1) ± a)r(p + Ov + 2OA + 2O n)(~-Wïï)n n=0 r(A + n + 1)mr(v + A + np + 1)2r(1 + p+0(v+22X+2n) ± n)n!

(

X v+2X

w/2 J (1/a)0(v+2X) -x

(a)p

n

X

o

3^m+2

(1,1), (p+0(v+2X)+1 ± a, 0), (p + 0(v + 2A) + 1, 20); (A + 1,1),..., (A + 1,1), (v + A + 1, f), 2(1 + p+e(v+2X) ± n, 0);

G-2)«)

(30)

<M 00 CN

cn CD <M S± CP

O

t3

Special cases

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

In this section, we get some integral formulas involving a trigonometric function and the generalized Lommel-Wright function as follows:

Corollary 1. If we take m = 1, f = 1, A = 0 and v = 1/2 in (1) and then by using (8), we derive the following integral formula:

zp-W/2-ijn (az) sin(b zw )dz = ^ a)

(*)

p+w/2

(

(3/2,1), ((

P+w/2

2+n-(p+w/2) 2

), -w);

-b2 4

(31)

Corollary 2. If we take m = 1, f = 1, A = 0 and v = 1/2 in (2) and then by using (8), we obtain:

jT+0° zp-w/2-1Kv(az) sin(b zw)dz = (W) a)

p+w/2

1^1

(

p+w/2±n

w); (4

(3/2,1);

4

(D

(32)

Corollary 3. If we take m = 1, f = 1, A = 0 and v = 1/2 in (3) and then by using (8), we obtain:

zp-w/2-1 exp(-az)Kn(az) sin(b zw)dz = j^)^)

0 1

; \4(4a2)wy

(p + w/2 ± n, 2w); (3/2,1), (p + w/2+ 1/2, 2w)

(33)

<u E E

o -j

~o

<u

N

1° CD c <u

o

CO

E o

M—

CO

CD

>

"D

CO <

ro cu OT

CO .c

X

w

2

X

C\l <D

O

"o

>

CN CM o CM

0£ yy

0£ ZD O o

-J

<

o

X

o

LU

I—

>-

CC <

CD

S2 ■O

x

LU I—

o

o

Corollary 4. If we take m = 1, p = 1, A = 0 and v = 1/2 in (4) and then by using (8), we obtain:

r

/ zp-e/2-i exp(az/2)Wn , a(az) sin(w zd)dz = Jo

((a)p+w/2(r(i/2 ± a - n))

)

2 ^1

(1/2 ± a + p + 0/2,29), (n - p - 9/2, -29) (3/2,1);

; /-M Ua2)V

(34)

Corollary 5. If we take m = 1, p = 1, A = 0 and v = 1/2 in (5) and then by using (8), we obtain:

r

/ zp-d/2-1 exp(-az/2)Mn , a(az) sin(w zd)dz = o

(

w/2y/n(1/a)d/2r(2a + 1)

)

2^2

(a)P(r(a + n + 1/2))

(a + p + 9/2, 29), (n - p - 9/2, -29) (3/2,1), (a - 9 + 1/2, -29);

V4(a2)V

(35)

Corollary 6. If we take m = 1, p = 1, A = 0 and v = 1/2 in (6) and then by using (8), we obtain:

w/2^(1/a)e)2

r+tt /

J zp-e/2-1Wvaa(az)W-naa(az) sin(w zd)dz = i

2^2

(a)P

(p+^2±i ± a,9), (p + 9/2 + 1,29); x ( -w

(3/2,1), 2(1 + f+f2 ± n, 9);

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

G(a2)0

• (36)

Corollary 7. If we take m = 1,p = 1, A = 0 and v = -1/2 in (1) and then by using (9), we derive the following integral formula:

J±° zp-w/2-1 Jv(az)cos(z)dz = ^(4) (2/a)

p-w/2

1^2

(n+^^w); (—)(4)'

(1/2,1), ((

2+n-(p-w)2)

2

), -w);

(37)

X

X

Corollary 8. If we take m = 1, f = 1, A = 0 and v = -1/2 in (2) and then by using (9), we obtain:

p-w/2

zp-w/2-1Kv(az) cos(z)dz = 1/4^^

" (i)(a)

(1/2,1);

(38)

CoRoLLARY 9. If we take m = 1, f = 1, A = 0 and v = -1/2 in (3) and then by using (9), we obtain:

J zp-w/2-1 exp(-az)Kn(az) cos(b zw)dz = i

2 an

1^2

J™ \ (a)p-w/2 (p - w/2 ± n, 2w); ( -b2

(1/2,1), (p - w/2 + 1/2, 2w); V4(4a2)

\

; \4(4a2)wy

(39)

Corollary 10. If we take m = 1,f = 1, A = 0 and v = -1/2 in (4) and then by using (9), we obtain:

r

/ zp-d/2-1 exp(az/2) WV:a(az) cos(w z6)dz = ./0

(

n

0

2

(a)p-0/2(r(1/2 ± a - n)) (1/2 ± a + p - 0/2, 20), (n - p + 0/2, -20); ( -w2 (1/2,1); \4(a2)'

(40)

Corollary 11. If we take m = 1,f = 1, A = 0 and v = -1/2 in (5) and then by using (9), we obtain:

r

/ zp-d/2-1 exp(-az/2)Mn,a(az) cos(w z6)dz = 0

/yn(1/a)-6/2r(2a + 1) v (a)p(r(a + n + 1/2))

)

2 ^2

(a + p - 0/2 + 1/2, 20), (n - p + 0/2, -20) (1/2,1), (a - p + 0 + 1/2, -20);

Wa2W

(41)

cn CD <M

S± p

O tj

cu E E

o -j

~o cu .N

CD c cu OT

o

CO

E o

M—

CO

cu

>

"D

CO <

"co cu OT

CO .c

w

X

X

CM <u

o

15 >

CN CM o CM

0£ yy

0£ ZD

o

O

-J

<

O X

o

LU

I—

>-

CC <

CD

S2 ■O

x

LU I—

o

o

Corollary 12. If we take m = 1,( = 1, A = 0 and v = -1/2 in (6) and then by using (9), we obtain:

r+<x

/ zp-e)2-1wv, a(az)W-n, a(az) cos(w zd)dz = o

V (a)P ,

2^2

(p-^2±i ± a, 9), (p - 9/2 + 1,

(1/2,1), 2(1 + —^ ± n, 9); V4(a2)

29); / -w2 \

; Wa2W

(42)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Corollary 13. If we take m = 1 in (1) and then by using (10), we derive the following integral formula:

yP-1

Jn (azJ '1 (b zw )dz = (1/2) [b/^+ ^2/a)

p+w(v+2\)

2^3

(1, 1)( n+p+wu+2w\,w);

(A +1, 1), (v + A + 1, (), ((2+n-(p+wv+2w1)), -w);

-b2 ) ( 4

(W

(43)

4a

Corollary 14. If we take m = 1 in (2) and then by using (10), we obtain:

v+21 ( \ p+w(v+2\)

zp-1Kn(azJ 1 (b zw)dz = (1/^ (b/2j (2/a)

" (1 1) (p+wv+2w\±n

2^2

,w); ±\

1,();\ 4 J\a2)

(44)

(A + 1,1), (v + A + 1,(); V 4 Corollary 15. If we take m = 1 in (3) and then by using (10), we obtain:

JQ zP exP(-az)Kn (azJ \ (b z )dz = ^ (2a)p+w(v+2X) ) x

2^3

(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1), (v + A + 1, (), (p + w(v + 2A) + 1/2, 2w);

-b2

(—)

\4(4a2)w J

(45)

v4(4a2)w

Corollary 16. If we take m = 1 in (4) and then by using (10), we obtain:

r

/ zp-1 exp(az/2)Wn, a(az) J^'A1(w zd)dz = Jo ' '

276

X

X

o

w

(

(w/2)

v+2X

(a)p+6(v+2X) (r(1/2 ± a - n)).

3^2

(1,1)(1/2 ± a + p + 0v + 20A, 20), (n - p - 0v - 20A, -20); (A + 1,1), (v + A + 1, f);

w

V4(a2)6;

(46)

,4(a2)6,

Corollary 17. If we take m = 1 in (5) and then by using (10), we obtain:

3^3

r+m

/ zp-1 exp(-az/2)Mv,a(az)J^¿(w z6)dz =

Jo ' '

((w/1)v+2X(1/a)6(v+2X)r(2a + 1)) V (a)p (r(a + n + 1/2)) (1,1), (a + p + 0v + 20A + 1/2, 20), (n - p - 0v - 20A, -20); (A + 1,1), (v + A + 1, f), (a - p - 0v - 20A + 1/2, -20);

w2

4(a2)6

(47)

Corollary 18. If we take m = 1 in (6) and then by using (10), we obtain:

f+m

zp-1Wv,a(az)W-v,a(az)J^(w z6)dz =

(w/2)v+2X(1/a)6(v+2X)

. w

3^3

(1,1), (p+6(v+22X)+1 ± a,0), (p + 0(v + 2A) + 1, 20); / -w2 \ (A + 1,1), (v + A + 1, f), 2(1 + p+6(v2+2X) ± n, 0); V4(a2)6J

.(48)

Corollary 19. If we take m = 1,f = 1 and A = 1/2 in (1) and then by

using (11), we derive the following integral formula:

( )( ) v+1 ( ) p+w(v+1)

f0+m zp-1Jv (az)Hv (b zw )dz = I 1/2 J lb/2) I 2/a I x

2^3

(1,1)( n+p+wv+w ,w);

(3/2,1), (v + 3/2,1), ((2+n-(p+wv+w)), -w)

.(49)

Corollary 20. If we take m = 1, f = 1 and A = 1/2 in (2) and then by using (11), we obtain:

r+m ( )( ) v+1 ( ) p+w(v+1)

J zp-1Kv (az)Hv (b zw )dz = h/4) \b/2) i 2/aJ x

277

<M 00 CN

cn CD <M

S± p

O tj

cu E E

o -j

~o

cu N

"ro

cu c cu

CT

o

CO

E o

M—

CO

cu

>

"O

CO <t

"co cu 00

ro .c

X

0

CM <u

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

o

15 >

CN CM o CM

0£ yy

0£ ZD

o

O

-J

<

O X

o

LU

I—

>-

CC <

CD

S2 ■O

x

LU I—

o

o

2^2

(1, 1), (p+wv±w±n, w); i-b^f ±\

(3/2,1), (v + 3/2,(); 4 ) [a2)

• (50)

Corollary 21. If we take m = 1, ( = 1 and A = 1/2 in (3) and then by using (11), we obtain:

f+tt

/ zp-1 exp(-az)Kn(az)Hv(b zw)dz = o

f2ay/n(b/2)

V+1

2^3

(2a)(+w(v+1)

(1,1), (p + wv + w ± n, 2w); / -b2

_ (3/2,1), (v + 3/2,1), (p + w(v + 1) + 1/2, 2w); V4(4a2)

i— ^

; \4(4a2)wJ

• (51)

Corollary 22. If we take m = 1, ( = 1 and A = 1/2 in (4) and then by using (11), we obtain:

r +tt /

J zp-1 exp(az/2)Wn , a(az)Hv(w zd)dz =

(w/2)

V+1

3^2

(a)p+0(v+1)(r(1/2 ± a - n)) (1,1)(1/2 ± a + p + 9v + 9,29), (n - p - 9v - 9, -29); (3/2,1), (v + 3/2,1);

)

G(a2)0)

(52)

Corollary 23. If we take m = 1, ( = 1 and A = 1/2 in (5) and then by using (11), we obtain:

/+tt

zp-1 exp(-az/2)Mn a a(az)Hv(w zd)dz = " )

3^3

i (w/2)v+1(1/a)0(v+1) r(2a + 1)' V (a)P(r(a + n + 1/2)) ' X (1,1), (a + p + 9v + 9 + 1/2,29), (n - p - 9v - 9, -29); (3/2,1), (v + 3/2,1), (a - p - 9v - 9 + 1/2, -29); w2

G(a2)0)

(53)

Corollary 24. If we take m = 1, ( = 1 and A = 1/2 in (6) and then by using (11), we obtain:

j0+°° zp-1Wn ' a(az)W-n'a(az)Hv(w z0)dz = (^^¿lO^l^ x

278

X

3^3

(1,1), (p+6(v+1)+1 ± a, 0), (p + 0(v + 1) + 1, 20); ( -w2 ) (3/2,1), (v + 3/2,1), 2(1 + p+6(2;+1) ± n, 0); V4(a2)6J

. (54)

References

cn CD <M

S± p

O

t3

Chaurasia, V.B.L. & Pandey, S.C. 2010. On the fractional calculus of generalized Mittag-Leffler function. SCIENTIA Series A: Mathematical Sciences, 20, pp.113-122 [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.399.5089&rep=rep1&type=pdf [Accessed: 9 February 2022].

Choi, J. & Agarwal, P. 2013. Certain unified integrals associated with Bessel e functions. Boundary Value Problems, art.number:95. Available at: |

https://doi.org/10.1186/1687-2770-2013-95.

Choi, J., Mathur, S. & Purohit, S.D. 2014. Certain new integral formulas involving the generalized Bessel functions. Bulletin of the Korean Mathematical Society, 51(4), pp.995-1003. Available at: https://doi.org/10.4134/BKMS.2014.51A995.

Jain, S., Choi, J., Agarwal, P. & Nisar, K.S. 2016. Integrals involving Laguerre type plynomials and Bessel functions. Far East Journal of Mathematical Sciences (FJMS), 100(6), pp.965-976. Available at: https://doi.org/10.17654/MS100060965.

Kachhia, K.B. & Prajapati, J.C. 2016. On generalized fractional kinetic equations involving generalized Lommel-Wright functions. Alexandria Engineering Journal, 55(3), pp.2953-2957. Available at: https://doi.org/10.1016/j.aej.2016.04.038.

Kiryakova, V.S. 2000. Multiple(multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. Journal of Computational and Applied Mathematics, 118(1-2), pp.241-259. Available at: https://doi.org/10.1016/S0377-0427(00)00292-2.

Mathai, A.M., Saxena, R.K. & Haubold, H.J. 2010. The H-function: Theory and Applications. New York, NY: Springer. Available at: https://doi.org/10.1007/978-1-4419-0916-9.

Mathai, A.M. & Saxena, R.K. 1973. Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Berlin Heidelberg: Springer- § Verlag. Available at: https://doi.org/10.1007/BFb0060468. §.

Menaria, N., Nisar, K.S. & Purohit, S.D. 2016. On a new class of integrals involving product of generalized Bessel function of the first kind and general class of polynomials. Acta Universitatis Apulensis, 46, pp.97-105 [online]. Available at: https://www.emis.de/journals/AUA/pdf/74_1366_aua_2841701 .pdf [Accessed: 9 February 2022].

Mondal, S.R. & Nisar, K.S. 2017. Certain unified integral formulas involving the generalized modified k-Bessel function of first kind. Communications of the Korean Mathematical Society, 32(1), pp.47-53. Available at: https://doi.org/10.4134/CKMS.c160017.

CD

"O

CD

.N

"TO

CD c CD OT

>

"O

CO <

ro

CD OT

Paneva-Konovska, J. 2007. Theorems on the convergence of series in generalized Lommel-Wright functions. Fractional Calculus and Applied Analysis, 10(1), pp.59-74 [online]. Available at: http://eudml.org/doc/11298 [Accessed: 9 February 2022].

> Rainville, E.D. 1960. Special Functions. New York: The Macmillan Company.

В Srivastava, H.M. & Daoust, M.C. 1969. Certain generalized Neumann expan-

° sions associated with Kampe-de-Feriet function. Proceedings of the Koninklijke ^ Nederlandse Akademie van Wetenschappen Series A-Mathematical Sciences, E 72(5), pp.449-457.

о Srivastava, H.M. & Manocha, H.L. 1984. A treatise on generating functions.

Chichester, West Sussex, England: E. Horwood & New York: Halsted Press. ISBN: 3 9780853125082.

_ Whittaker, E.T. & Watson, G.N. 2013. A Course of Modern Analysis, reprint of

^ the fourth (1927) edition. Cambridge University Press, Cambridge Mathematical Library. Available at: https://doi.org/10.1017/CB09780511608759.

<c

ИССЛЕДОВАНИЕ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ ОБОБЩЕННЫХ ФУНКЦИЙ ЛОММЕЛЯ-РАЙТА

Мохаммад Саид Кхан3, Сиразул Хакб, Мохаррам Али Кханв, Никола Фабианог

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

CD

_ a Университет медицинских наук Сефако Макгато,

о кафедра математики и прикладной математики,

г. Га-Ранкува, Южно-Африканская Республика

ш б Дж. С. Университет, департамент прикладных наук,

О г. Шикохабад, Фирозабад, штат Уттар-Прадеш, Республика Индия

g в Университет Умару Мусы Яр' Адуа, Кафедра математики и

статистики, г Катсина, Федеративная Республика Нигерия г Белградский университет, Институт ядерных исследований «Винча» - Институт государственного значения для Республики Сербия, г. Белград, Республика Сербия, корреспондент

РУБРИКА ГРНТИ: 27.23.21 Интегральные преобразования.

Операционное исчисление, 27.23.25 Специальные функции, 27.27.19 Функции многих комплексных переменных ВИД СТАТЬИ: оригинальная научная статья

Резюме: га

с

Введение/цель: Целью данной статьи является устано- со вление интегральных преобразований обобщенной функ- о. ции Ломмеля-Райта. а

о

Методы: Эти преобразования выражаются в терминах £ гипергеометрической функции Райта.

Результаты: В результате получены интегралы с тригонометрическими, обобщенными функциями Бесселя и Струве. ¡=

Е

Выводы: Вследствие применения данного метода получа- р ются различные интересные преобразования.

СТУДША О ИНТЕГРАЛНИМ ТРАНСФОРМАЦШАМА ГЕНЕРАЛИЗОВАНЕ ФУНКЦШЕ ЛОМЕЛА И РАJТА

ОБЛАСТ: математика

ВРСТА ЧЛАНКА: оригинални научни рад

Сажетак:

Увод/цил>: Циъ овог рада }есте успоставъаъе интеграл-них трансформаци]а генерализоване функци]е Ломела и Ра]та.

"О ф

N

Ключевые слова: обобщенные функции Ломмеля-Райта 2 и(2), преобразование Ханкеля, К-преобразование, функция ^ Райта, функция Уиттекера.

о

Е о

ч—

> "О

Мохамед Саид Кана, СиразулХакб, Мохарам Али Канв, Никола Фабианог

а Универзитет здравствених наука Сефако Макгато, ~

Департман за математику и приме^ену математику, Га-Ранкува, Република иужна Африка

б Универзитет и. С., Оде^е^е за приме^ене науке, Шикохабад

Фирозабад, Утар Прадеш, Република Инди]а в Универзитет Умару Муса Иарадуа, Департман за математику и

статистику, Катсина, Савезна Република Нигери]а г Универзитет у Београду, Институт за нуклеарне науке "Винча"- от

Институт од националног знача]а за Републику Срби]у, Београд Република Срби]а, ауторза преписку

2

<u

о

7

о >

Методе: Интегралне трансформаци]е изражене су помогу Ра}тове хипергеометри]ске функци]е.

Резултати: Доби}ени су интеграли ко\и укя>учу]у тригоно-метри]ске, генерализоване Беселове и Струвеове функци-¡е.

Закъучак: Као последице ове методе доби]а]у се разне за-нимъиве трансформаци]е.

ш

^ Къучне речи: генерализоване функци]е Ломела и Ра]та

о J(z), Ханкелова трансформаци]а, К-трансформаци]а, Ра]-

° това функци]а, Витакерова функци]а.

<

о

0 Paper received on / Дата получения работы / Датум приема чланка: 10.02.2022. Manuscript corrections submitted on / Дата получения исправленной версии работы /

> Датум достав^а^а исправки рукописа: 14.03.2022.

¡< Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 16.03.2022.

© 2022 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier (http://vtg.mod.gov.rs, http://втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license <j (http://creativecommons.org/licenses/by/3.0/rs/).

CD

_ © 2022 Авторы. Опубликовано в "Военно-техническии вестник / Vojnotehnicki glasnik / Military ^ Technical Courier" (http://vtg.mod.gov.rs, http://втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией "Creative Commons"

1 (http://creativecommons.org/licenses/by/3.0/rs/).

q © 2022 Аутори. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (http://vtg.mod.gov.rs, httpV/втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се О у складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/).

i Надоели баннеры? Вы всегда можете отключить рекламу.