ОРИГИНАЛНИ НАУЧНИ РАДОВИ ОРИГИНАЛЬНЫЕ НАУЧНЫЕ СТАТЬИ
ORIGINAL SCIENTIFIC PAPERS S
CM
cn CD <M
A STUDY ON INTEGRAL TRANSFORMS OF THE GENERALIZED LOMMEL-WRIGHT FUNCTION
Mohammad Saeed Khana, Sirazul Haqb,
Moharram Ali Khanc, Nicola Fabianod |
Sefako Makgatho Health Sciences University, q
DOI: 10.5937/vojtehg70-36402;https://doi.org/10.5937/vojtehg70-36402 FIELD: Mathematics
ARTICLE TYPE: Original scientific paper Abstract:
Introduction/purpose: The aim of this article is to establish integral transforms of the generalized Lommel-Wright function.
Methods: These transforms are expressed in terms of the Wright Hyper-geometric function.
Results: Integrals involving the trigonometric, generalized Bessel function and the Struve functions are obtained.
о t3
<u
Department of Mathematics and Applied Mathematics,
Ga-Rankuwa, Republic of South Africa,
e-mail: [email protected], ro
ORCID iD: ©https://orcid.org/0000-0003-0216-241X b <u
b J. S. University, Department of Applied Science, ^
Shikohabad, Ferozabad, U.P., Republic of India,
e-mail: [email protected], o
ORCID iD: ©https://orcid.org/0000-0001-9297-2445
c Umaru Musa Yaradua University, o
Department of Mathematics and Statistics,
Katsina, Federal Republic of Nigeria,
e-mail: [email protected],
ORCID iD: ©https://orcid.org/0000-0002-5563-4743
d University of Belgrade, "Vinca" Institute of Nuclear Sciences -Institute of National Importance for the Republic of Serbia, Belgrade, Republic of Serbia,
e-mail: [email protected], corresponding author, w
ORCID iD: ©https://orcid.org/0000-0003-1645-2071
(Я
>
ro <u СЯ S
с го .с
C\l <D
O
"(5 >
CN CM o CM
0£ yy
0£ ZD O o
-J
<
o
X
o
LU
I—
>-
Q1 <
CD
S2 ■O
x
LU I—
o
o
Conclusions: Various interesting transforms as the consequence of this method are obtained.
Key words: Generalized Lommel-Wright functions J(z), Hankel transform, K-transform, Wright function, Whittaker function.
Introduction
The transform defined by the following integral equation
r
Rv{f (x);p} = g(p, v) = (px)l/2Kv(px)f (x)dx (1)
J 0
is called the k transform with p as a complex parameter and Kv(px) is called the Modified Bessel function of the third kind or the Macdonald function, see (Mathai et al, 2010, p.53). The Hankel transform of a function f (x), denoted by g(p, v) is defined as
f+m
g(p, v) = (px)1/2Jv(px)f (x)dx, p> 0 J 0
(2)
where Jv(px) is called the Bessel-Maitland function or the Maitland-Bessel function (Mathai et al, 2010, p.22 and p.56).
The Wright hypergeometric function defined by the series (Srivastava & Manocha, 1984):
p^q
(ai,Ai), .., (ap,Ap);
L (Pl,Bl).., (Pq ,Bq )
n r(aj + Ajk)zk
Ej=i_
_q '
k=0 Û r(Pj + Bjk)k! j=i
(3)
where the coefficients A1,....Ap and Bi,....Bq are positive real numbers such that
qp
(4)
1 + E Bj -E a ^0' j=1 j=1
can be slightly generalized (3) as given below.
p^q
(ai, 1), .., (ap, 1); (Pi, 1)..., (Pq, 1)
n r(aj) j=i
n r(Pj) j=i
pFq
ai,.., ap;
Pi,...,Pq
(5)
264
z
z
z
where pFq is the generalized hypergeometric function defined by (Srivas-tava & Manocha, 1984; Rainville, 1960)
F
p Fq
ßl,..,ßq
£
k=0
(ai)n,(ap)nzn (ßi)n,...., (ßq )n n!
pFq (ai,..., ap ; ßi, ....,ßq ; z),
(6)
2
3 6
2.
p. p
io cti
where (A)„ is the well known Pochhammer symbol (Srivastava & Manocha, 1984).
The series representation of the generalized Lommel Wright function as (Kachhia & Prajapati, 2016);
4;m(z) = E
k=0
(-i)k r(k + i)( § )2k+v+2A r(A + k + 1)mr(v + kß + A + 1)k! '
(z £ C/(-œ, 0], m £ N, v,A £ C,ß> 0).
(7)
Also, we have the following relations of the generalized Lommel Wright functions with trigonometric functions and the generalized Bessel function $V,\(Z) and the Struve function as follows:
e m m o
-j
d e
iz ral
er
n
e g
o
s
rm or
f s
g e
JilA0(z)= 'nzSin(z)
J l\\o0(z) = \ — cos(z) V nz
-1/2,0(
(8)
(9)
y
d u t
s
A,
al
t e S.
Jßv'l (z) = KAz)
(10)
a h K
JV,'l/2(z) = Hv (z) •
(11)
The following known results of Mathai and Saxena (Mathai & Saxena, 1973):
r+<x
/ x5-1 Jn (ax)dx = 0
25-la-5 r( 5++n )
r(i +— )
, n(n) < K(5) < 3/2, a> 0 (12)
265
z
CM r+x>
0 / xS-1Kv(ax)dx = 2S-2a-Sr(S ± n)/2, (13)
J 0
o
P xi~' exp(-at)K„(ax)dx = (2a)^-T±(;)+/21/2) • (14)
- x- exp(1/2 xW„,(x)d* = - S), (15)
IT ZD O o
< O
x i xS-1 exp(-1/2 x)M(n,m)(x)dx
o Jo
LU
■ r(2m + 1)r(m + S + 1/2)r(n - S) (16)
dc r(m - S + 1/2)r(m + n + 1/2) ' (
neralizations and cases of the Lommel-Wright function have been investigated. For details, see (Paneva-Konovska, 2007; Menaria et
al, 2016; Mondal & Nisar, 2017; Srivastava & Daoust, 1969; Kiryakova, 2000).
§ Integral formulas involving the Lommel-Wright functions have been de-
ep veloped by many authors. See e.g., (Choi & Agarwal, 2013; Choi et al, 2014; Jain et al, 2016; Chaurasia & Pandey, 2010). In this sequel, here, we aim at establishing a certain new generalized integral formula involving the generalized Lommel-Wright function J^xZ interesting integral formulas which are derived as special cases.
Main results
This section deals with the evaluation of integrals formulas involving the Lommel-Wright function defined in (7) and the integrals involving the product of the Bessel function of first kind, the Kelvin's function and Whittaker function (Whittaker & Watson, 2013) with the generalized Lommel-Wright function.
Theorem 1. Let z e C/(-rc>, 0], m e N, v,A e C, i > 0. Then the Hankel transform of the generalized Lommel-Wright function defined in (7) is given by
1 ( b \ v+2A ( 2 ^ P+W(U+2X)
r° zp-ijn ww^ vz(a)
2^m+2
2\2j \a
(1, 1), ( V+P+Wv+2WX (A + 1,1),..., (A + 1,1), (v + A + 1,i), ((), -w) - b2 )( 4 x w ]
(18)
Proof. On using (7) in the integrand of (1) which is verified by uniform convergence of the involved series under the given conditions, we get
£
n=0
/ zp-1 Jv (az)J^m(bzW )dz = Jo '
(-1)nr(n + 1)(b/2)2n+V+2A f+« zP+w{2n+v+2X)-1
r(A + n + 1)mr(v + A + ni + 1)n! Jo
Jn (az)dz.
Now using (12) in the above equation we get
p+w(v+2A)
zp-1 J(azJm(bzw)dz = (1/2) (Vy ^2/a) r(n + 1)r(n + p + wv + 2wA + 2wn)/2^ - b2/^ ^4/a2^
E
n=o
r(A + n + 1)mr(v + A + ni + 1)r(2 + n - p - wv - 2wA - 2wn)/2 n!
1 ( b\ v+2X /^ p+w(v+2A)
2W W
- I X
(1,1)7 n+p+wv+2wX ,w
(A + 1,1),(A + 1,1), (v + A + 1,i), ((^v-^^2^ , -w^j ;
(W
(19)
□
Theorem 2. Let z e C/(-&>, 0], m e N, v, A e C,i > 0. Then the K-Transform of the generalized Lommel-Wright function defined in (7) is given
2
2
3 6
2.
p. p
io cti
e m m o L d
e ral
er
n
e g
o
s
rm or
f s
g e
>
d t s
<
al
t e
a h
267
X
CM <u
by
o
"o
>
cn
CM o CM
0£ yy
0£ ZD
o o
-J
<
o z
X
o
LU
I—
>-
CC <
CD
S2 >o
X LU I—
o
o
f+m 1 / b\ v+2x /
I zp-1Kv (azjm(bzw )dz = 4(jj
2^m+1
(1,1), (p+wv+22wX±n,w)
1 ( b\ V+2X ( 2\ P+W(v+2X)
4 V 2 / \a) '
4
(A + 1,1), •••, (A + 1,1), (v + A + 1,x); V 4
(20)
Proof. On using (7) in the integrand of (2) which is verified by uniform convergence of the involved series under the given conditions, we get
f+<X
/ Zp-1KV (az)4m(bzw )dz =
Jo '
JO
~ (-lyre+l)(b/2)^»> zP+w^+v+2x)-iKv(az)dz.
E
n=0
r(A + n + 1)"T(v + A + nf + 1)n! ,/0
Now using (13) in the above equation we get
v+2X ( \ p+w(v+2A)
zp-1Kv(azjm(bzw)dz = (1/4) (Vy ^2/a)
r(n + 1)r(p + wv + 2wA ± n +
E-
n=0
(\n/ \ nw
- b2/4) (4/a2)
r(A + n + 1)mr(v + A + nf + 1)n!
1 ( b\ v+2X f 2 \ P+w(v+2X)
= w
(1, 1), ( P+wv+22wX±V , w); / -tf W 4 X1
4 ) \a2)
+2wx±n, w); _ (A + 1,1), •••, (A + 1,1), (v + A + 1
(21)
□
Theorem 3. Let z e C/(-rc>, 0], m e N, v, A e C,x > 0. Then the K-Transform of the generalized Lommel-Wright function defined in (7) is given by
f+m
/ zp-1 exp(-az)Kn(az)J^m(b zw)dz =
Jo '
2av^ b/2
v+2X
(2a)P+w(v+2X)
2^m+2
(A + 1,1),
(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1), (v + A + 1,f), (p + wv + 2wA + 1/2,2w);
x
o
X
\4(4a2)_ J
r+<x
/ zp-1 exp(—az)K (az)J^m(bzw )dz J 0 '
(—1)nr(n + 1)(b/2)2n+v+2A
Now using (14) in the above equation we get
f+™ 2a^(b/2
0 z" eM—az)Kv(az)-vm(bzw)dz _
g r(n + 1)r(p + wv + 2w\ ± n + 2wn)()
n=0
r(A + n + 1)mr(v + A + nf + 1)(p + wv + 2wA + 1/2, 2w)n!
2^m+2
_ 2a^(b/2)v+2A
_ (2a)P+w(v+2A) x
(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1),..., (A + 1,1), (v + A + 1,f), (p + wv + 2wA + 1/2,2w);
\4(4a2)w )
(24)
□
3
^m+1
(a)P+e(»+2X)r(1/2 ± a — n) (1,1), (1/2 ± a + p + vd + 2A9, 2d), (—n — p — vd — 2dA, —2d); (A + 1,1),..., (A + 1,1), (v + A + 1,f);
rn CO
<m
S± CP
Proof. On using (7) in the integrand of (3) which is verified by uniform convergence of the involved series under the given conditions, we get o
o
<u
^r(A + n + 1)mr(v + A + nx + 1)n!" |
n=0 t
o
zP+_(2n+v+2\)-1 exp(—az)Kv (az)dz. (23) |
re
<D c <u
<u
>
"D
(0 <
<u 00
ro
Theorem 4. Let z e C/(—<x, 0], m e N, v,A e C,x > 0. Then the pro- ^ duct of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by
( \ v+2\
rw/2 l zp-1 exp(az/2)WVa(az)J^m(w zd)dz _ +^+2^-
(M <D
O
"(5 >
cn
(M o (M
yy
0£ ZD
o o
-J
<
o
X O LU
I—
>-
Q1 <
CD
S2 >0
x
LU I—
O
o
Ua2)0)
(25)
Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ x ^ and using (7) in the integrand of (4) which is verified by uniform convergence of the involved series under the given conditions, we get
r+<x
/ zp-1 exp(az/2)Wv,a (az)J^m(wz0 )dz = Jo ' '
v+2X
w/2 ) +(X
E
(ay+C+M) n=0
f
r(A + n + 1)mr(v + A + np + 1)n! xp+e(2n+u+2X)-1 exp(x/2)Wv,a(x)dx.
Now using (15) in the above equation we get
r(w /2) v+2X
l zp-1 eM.az/2)Wn,a(az)Jí;:r(wz°)dz = ay+e{vUT{1/2 ±
o
E
n=0 L
(a)P+e(v+2X'Y(1/2 ± a - n) r(n + 1)r(1/2 ± a + p + Ov + 20A + 26 n)r(-n - p - Ov - 20A - 29 n)
G(a2)0
r(A + n + 1)mr(v + A + np + 1)n!
v+2X
2 \ nl 2)0
w/2
(a)p+0(v+2X)r(1/2 ± a - n)
(1,1), (1/2 ± a + p + Ov + 2OA, 29), (-n - p - vO - 2OA, -29); (A + 1,1),..., (A + 1,1), (v + A + 1, p); ,2
(26)
Ua2)0)
□
Theorem 5. Let z e C/(-rc>, 0], m e N, v,X e C,p > 0. Then the product of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by
r
/ z— exp(-az/2)MVa(az)J^m(w ze)dz = Jo ' '
270
X
o
X
X
/ \ v+2X
(w/2\ (1/a)9(v+2X)r(2a + 1)
_-—-x
(a)^r(a + n + 1/2)
(1,1), (a + p + 1/2 + vd + 2Xd, 2d), (n - p - vd - 2d\, -2d); (X + 1,1),..., (A + 1,1), (v + A + 1, p), (a - p - dv - 2dX + 1/2, -2d)
V4(a2)V
(27)
Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ +œ, x ^ and using (7) in the integrand of (5) which is verified by uniform convergence of the involved series under the given conditions, we get
f+m
/ zp-1 exp(-az/2)Mv , a (azJ m(wz9 )dz = J o ' '
w/2
v+2X
(1/a)9(v+2X)
(a)p
£
n=0 /■+<x
r(X + n + 1)mr(v + X + np + 1)n! xP+e(2n+v+2x)-1 exp(-x/2)Mn , a(x)dx.
Now using (16) in the above equation we get
E
n=0
r+<x
/ zp-1 exp(-az/2)Mv , a(az)J^ f(wze )dz = 0
(w/2)v+2X(1/a)e(v+2XX)Y(2a + 1) (a)PT(a + n + 1/2) X
r(n + 1)r(a + p + dv + 2dX + 1/2 + 2d n)r(n - p - dv - 2dX - 2d n) r(X + n + 1)mr(v + X + up + 1)r(a - p - dv - 2dX - 2nd + 1/2)n!
( )n] = (w/2) U(a2)V
v+2X
(1/a)9(v+2X)r(2a + 1)
(a)pr(a + n + 1/2) (1,1), (a + p + 1/2 + vd + 2Xd, 2d), (n - p - vd - 2dX, -2d); (X + 1,1),..., (X + 1,1), (v + X + 1, p), (a - p - dv - 2dX + 1/2, -2d)
G(a2)9)
(28)
cn CD <M
O tj
<U
E E
o -j
~o
<u
N
1Ë <D c <u
o tn E o
M—
(0
<u
>
"D
(0 <
m
<u 00
ro
-C
X
0
X
(M <u
o
"(5 >
cn
(M o (M
< o
X
O
CD
S2 >0
Theorem 6. Let z e C/(-rc>, 0], m e N, v,\ e C,p > 0. Then the product of the Whittaker function and the generalized Lommel-Wright function defined in (7) is given by
CC /X V+2X
E w/2 (1/a)0(v+2X
O zp-1 Wv,a (az) W-n,a (az) J^m(w z0)dz = ±-J -
0 Jo ' (a)p
0
- (1,1), (p+0(u+2X)+1 ± a, O), (p + 9(v + 2A) + 1,29);
(A + 1,1),..., (A + 1,1), (v + A + 1, p), 2(1 + p+0(v2+2X) ± n, O)
3^m+2
* ( -w2 \
| W2)0)
2
(29)
Proof. Putting az = x, adz = dx as z ^ 0,x ^ 0 and z ^ x ^ and using (7) in the integrand of (6) which is verified by uniform convergence of the involved series under the given conditions, we get
( \ v+2\
w/2 (1/a)°(v+2X) J zp-1W-v, a(az)Wv, a(az)J^ m(wzd )dz = ^-J--^-x
x Jo
§ r(n + 4-W)
O E
n=o
r(A + n + 1)mr(v + A + np + 1)n!
r+œ
/ Xp+d(2n+V+2X)-1W-n,a(x)Wv,a(x)dx. o
Now using (17) in the above equation we get
f+™ p-(w/2)v+2X(1/a)0(v+2X)
zp-1W-n,a(az)Wn,a(az)Jp;'Xm(wze )dz =
(a)p
r(n + 1)r(p+0(v+2¡X+2n+1) ± a)r(p + Ov + 2OA + 2O n)(~-Wïï)n n=0 r(A + n + 1)mr(v + A + np + 1)2r(1 + p+0(v+22X+2n) ± n)n!
(
X v+2X
w/2 J (1/a)0(v+2X) -x
(a)p
n
X
o
3^m+2
(1,1), (p+0(v+2X)+1 ± a, 0), (p + 0(v + 2A) + 1, 20); (A + 1,1),..., (A + 1,1), (v + A + 1, f), 2(1 + p+e(v+2X) ± n, 0);
G-2)«)
(30)
□
<M 00 CN
cn CD <M S± CP
O
t3
Special cases
In this section, we get some integral formulas involving a trigonometric function and the generalized Lommel-Wright function as follows:
Corollary 1. If we take m = 1, f = 1, A = 0 and v = 1/2 in (1) and then by using (8), we derive the following integral formula:
zp-W/2-ijn (az) sin(b zw )dz = ^ a)
(*)
p+w/2
(
(3/2,1), ((
P+w/2
2+n-(p+w/2) 2
), -w);
-b2 4
(31)
Corollary 2. If we take m = 1, f = 1, A = 0 and v = 1/2 in (2) and then by using (8), we obtain:
jT+0° zp-w/2-1Kv(az) sin(b zw)dz = (W) a)
p+w/2
1^1
(
p+w/2±n
w); (4
(3/2,1);
4
(D
(32)
Corollary 3. If we take m = 1, f = 1, A = 0 and v = 1/2 in (3) and then by using (8), we obtain:
zp-w/2-1 exp(-az)Kn(az) sin(b zw)dz = j^)^)
0 1
; \4(4a2)wy
(p + w/2 ± n, 2w); (3/2,1), (p + w/2+ 1/2, 2w)
(33)
<u E E
o -j
~o
<u
N
1° CD c <u
o
CO
E o
M—
CO
CD
>
"D
CO <
ro cu OT
CO .c
X
w
2
X
C\l <D
O
"o
>
CN CM o CM
0£ yy
0£ ZD O o
-J
<
o
X
o
LU
I—
>-
CC <
CD
S2 ■O
x
LU I—
o
o
Corollary 4. If we take m = 1, p = 1, A = 0 and v = 1/2 in (4) and then by using (8), we obtain:
r
/ zp-e/2-i exp(az/2)Wn , a(az) sin(w zd)dz = Jo
((a)p+w/2(r(i/2 ± a - n))
)
2 ^1
(1/2 ± a + p + 0/2,29), (n - p - 9/2, -29) (3/2,1);
; /-M Ua2)V
(34)
Corollary 5. If we take m = 1, p = 1, A = 0 and v = 1/2 in (5) and then by using (8), we obtain:
r
/ zp-d/2-1 exp(-az/2)Mn , a(az) sin(w zd)dz = o
(
w/2y/n(1/a)d/2r(2a + 1)
)
2^2
(a)P(r(a + n + 1/2))
(a + p + 9/2, 29), (n - p - 9/2, -29) (3/2,1), (a - 9 + 1/2, -29);
V4(a2)V
(35)
Corollary 6. If we take m = 1, p = 1, A = 0 and v = 1/2 in (6) and then by using (8), we obtain:
w/2^(1/a)e)2
r+tt /
J zp-e/2-1Wvaa(az)W-naa(az) sin(w zd)dz = i
2^2
(a)P
(p+^2±i ± a,9), (p + 9/2 + 1,29); x ( -w
(3/2,1), 2(1 + f+f2 ± n, 9);
G(a2)0
• (36)
Corollary 7. If we take m = 1,p = 1, A = 0 and v = -1/2 in (1) and then by using (9), we derive the following integral formula:
J±° zp-w/2-1 Jv(az)cos(z)dz = ^(4) (2/a)
p-w/2
1^2
(n+^^w); (—)(4)'
(1/2,1), ((
2+n-(p-w)2)
2
), -w);
(37)
X
X
Corollary 8. If we take m = 1, f = 1, A = 0 and v = -1/2 in (2) and then by using (9), we obtain:
p-w/2
zp-w/2-1Kv(az) cos(z)dz = 1/4^^
" (i)(a)
(1/2,1);
(38)
CoRoLLARY 9. If we take m = 1, f = 1, A = 0 and v = -1/2 in (3) and then by using (9), we obtain:
J zp-w/2-1 exp(-az)Kn(az) cos(b zw)dz = i
2 an
1^2
J™ \ (a)p-w/2 (p - w/2 ± n, 2w); ( -b2
(1/2,1), (p - w/2 + 1/2, 2w); V4(4a2)
\
; \4(4a2)wy
(39)
Corollary 10. If we take m = 1,f = 1, A = 0 and v = -1/2 in (4) and then by using (9), we obtain:
r
/ zp-d/2-1 exp(az/2) WV:a(az) cos(w z6)dz = ./0
(
n
0
2
(a)p-0/2(r(1/2 ± a - n)) (1/2 ± a + p - 0/2, 20), (n - p + 0/2, -20); ( -w2 (1/2,1); \4(a2)'
(40)
Corollary 11. If we take m = 1,f = 1, A = 0 and v = -1/2 in (5) and then by using (9), we obtain:
r
/ zp-d/2-1 exp(-az/2)Mn,a(az) cos(w z6)dz = 0
/yn(1/a)-6/2r(2a + 1) v (a)p(r(a + n + 1/2))
)
2 ^2
(a + p - 0/2 + 1/2, 20), (n - p + 0/2, -20) (1/2,1), (a - p + 0 + 1/2, -20);
Wa2W
(41)
cn CD <M
S± p
O tj
cu E E
o -j
~o cu .N
CD c cu OT
o
CO
E o
M—
CO
cu
>
"D
CO <
"co cu OT
CO .c
w
X
X
CM <u
o
15 >
CN CM o CM
0£ yy
0£ ZD
o
O
-J
<
O X
o
LU
I—
>-
CC <
CD
S2 ■O
x
LU I—
o
o
Corollary 12. If we take m = 1,( = 1, A = 0 and v = -1/2 in (6) and then by using (9), we obtain:
r+<x
/ zp-e)2-1wv, a(az)W-n, a(az) cos(w zd)dz = o
V (a)P ,
2^2
(p-^2±i ± a, 9), (p - 9/2 + 1,
(1/2,1), 2(1 + —^ ± n, 9); V4(a2)
29); / -w2 \
; Wa2W
(42)
Corollary 13. If we take m = 1 in (1) and then by using (10), we derive the following integral formula:
yP-1
Jn (azJ '1 (b zw )dz = (1/2) [b/^+ ^2/a)
p+w(v+2\)
2^3
(1, 1)( n+p+wu+2w\,w);
(A +1, 1), (v + A + 1, (), ((2+n-(p+wv+2w1)), -w);
-b2 ) ( 4
(W
(43)
4a
Corollary 14. If we take m = 1 in (2) and then by using (10), we obtain:
v+21 ( \ p+w(v+2\)
zp-1Kn(azJ 1 (b zw)dz = (1/^ (b/2j (2/a)
" (1 1) (p+wv+2w\±n
2^2
,w); ±\
1,();\ 4 J\a2)
(44)
(A + 1,1), (v + A + 1,(); V 4 Corollary 15. If we take m = 1 in (3) and then by using (10), we obtain:
JQ zP exP(-az)Kn (azJ \ (b z )dz = ^ (2a)p+w(v+2X) ) x
2^3
(1,1), (p + wv + 2wA ± n, 2w); (A + 1,1), (v + A + 1, (), (p + w(v + 2A) + 1/2, 2w);
-b2
(—)
\4(4a2)w J
(45)
v4(4a2)w
Corollary 16. If we take m = 1 in (4) and then by using (10), we obtain:
r
/ zp-1 exp(az/2)Wn, a(az) J^'A1(w zd)dz = Jo ' '
276
X
X
o
w
(
(w/2)
v+2X
(a)p+6(v+2X) (r(1/2 ± a - n)).
3^2
(1,1)(1/2 ± a + p + 0v + 20A, 20), (n - p - 0v - 20A, -20); (A + 1,1), (v + A + 1, f);
w
V4(a2)6;
(46)
,4(a2)6,
Corollary 17. If we take m = 1 in (5) and then by using (10), we obtain:
3^3
r+m
/ zp-1 exp(-az/2)Mv,a(az)J^¿(w z6)dz =
Jo ' '
((w/1)v+2X(1/a)6(v+2X)r(2a + 1)) V (a)p (r(a + n + 1/2)) (1,1), (a + p + 0v + 20A + 1/2, 20), (n - p - 0v - 20A, -20); (A + 1,1), (v + A + 1, f), (a - p - 0v - 20A + 1/2, -20);
w2
4(a2)6
(47)
Corollary 18. If we take m = 1 in (6) and then by using (10), we obtain:
f+m
zp-1Wv,a(az)W-v,a(az)J^(w z6)dz =
(w/2)v+2X(1/a)6(v+2X)
. w
3^3
(1,1), (p+6(v+22X)+1 ± a,0), (p + 0(v + 2A) + 1, 20); / -w2 \ (A + 1,1), (v + A + 1, f), 2(1 + p+6(v2+2X) ± n, 0); V4(a2)6J
.(48)
Corollary 19. If we take m = 1,f = 1 and A = 1/2 in (1) and then by
using (11), we derive the following integral formula:
( )( ) v+1 ( ) p+w(v+1)
f0+m zp-1Jv (az)Hv (b zw )dz = I 1/2 J lb/2) I 2/a I x
2^3
(1,1)( n+p+wv+w ,w);
(3/2,1), (v + 3/2,1), ((2+n-(p+wv+w)), -w)
.(49)
Corollary 20. If we take m = 1, f = 1 and A = 1/2 in (2) and then by using (11), we obtain:
r+m ( )( ) v+1 ( ) p+w(v+1)
J zp-1Kv (az)Hv (b zw )dz = h/4) \b/2) i 2/aJ x
277
<M 00 CN
cn CD <M
S± p
O tj
cu E E
o -j
~o
cu N
"ro
cu c cu
CT
o
CO
E o
M—
CO
cu
>
"O
CO <t
"co cu 00
ro .c
X
0
CM <u
o
15 >
CN CM o CM
0£ yy
0£ ZD
o
O
-J
<
O X
o
LU
I—
>-
CC <
CD
S2 ■O
x
LU I—
o
o
2^2
(1, 1), (p+wv±w±n, w); i-b^f ±\
(3/2,1), (v + 3/2,(); 4 ) [a2)
• (50)
Corollary 21. If we take m = 1, ( = 1 and A = 1/2 in (3) and then by using (11), we obtain:
f+tt
/ zp-1 exp(-az)Kn(az)Hv(b zw)dz = o
f2ay/n(b/2)
V+1
2^3
(2a)(+w(v+1)
(1,1), (p + wv + w ± n, 2w); / -b2
_ (3/2,1), (v + 3/2,1), (p + w(v + 1) + 1/2, 2w); V4(4a2)
i— ^
; \4(4a2)wJ
• (51)
Corollary 22. If we take m = 1, ( = 1 and A = 1/2 in (4) and then by using (11), we obtain:
r +tt /
J zp-1 exp(az/2)Wn , a(az)Hv(w zd)dz =
(w/2)
V+1
3^2
(a)p+0(v+1)(r(1/2 ± a - n)) (1,1)(1/2 ± a + p + 9v + 9,29), (n - p - 9v - 9, -29); (3/2,1), (v + 3/2,1);
)
G(a2)0)
(52)
Corollary 23. If we take m = 1, ( = 1 and A = 1/2 in (5) and then by using (11), we obtain:
/+tt
zp-1 exp(-az/2)Mn a a(az)Hv(w zd)dz = " )
3^3
i (w/2)v+1(1/a)0(v+1) r(2a + 1)' V (a)P(r(a + n + 1/2)) ' X (1,1), (a + p + 9v + 9 + 1/2,29), (n - p - 9v - 9, -29); (3/2,1), (v + 3/2,1), (a - p - 9v - 9 + 1/2, -29); w2
G(a2)0)
(53)
Corollary 24. If we take m = 1, ( = 1 and A = 1/2 in (6) and then by using (11), we obtain:
j0+°° zp-1Wn ' a(az)W-n'a(az)Hv(w z0)dz = (^^¿lO^l^ x
278
X
3^3
(1,1), (p+6(v+1)+1 ± a, 0), (p + 0(v + 1) + 1, 20); ( -w2 ) (3/2,1), (v + 3/2,1), 2(1 + p+6(2;+1) ± n, 0); V4(a2)6J
. (54)
References
cn CD <M
S± p
O
t3
Chaurasia, V.B.L. & Pandey, S.C. 2010. On the fractional calculus of generalized Mittag-Leffler function. SCIENTIA Series A: Mathematical Sciences, 20, pp.113-122 [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/downlo ad?doi=10.1.1.399.5089&rep=rep1&type=pdf [Accessed: 9 February 2022].
Choi, J. & Agarwal, P. 2013. Certain unified integrals associated with Bessel e functions. Boundary Value Problems, art.number:95. Available at: |
https://doi.org/10.1186/1687-2770-2013-95.
Choi, J., Mathur, S. & Purohit, S.D. 2014. Certain new integral formulas involving the generalized Bessel functions. Bulletin of the Korean Mathematical Society, 51(4), pp.995-1003. Available at: https://doi.org/10.4134/BKMS.2014.51A995.
Jain, S., Choi, J., Agarwal, P. & Nisar, K.S. 2016. Integrals involving Laguerre type plynomials and Bessel functions. Far East Journal of Mathematical Sciences (FJMS), 100(6), pp.965-976. Available at: https://doi.org/10.17654/MS100060965.
Kachhia, K.B. & Prajapati, J.C. 2016. On generalized fractional kinetic equations involving generalized Lommel-Wright functions. Alexandria Engineering Journal, 55(3), pp.2953-2957. Available at: https://doi.org/10.1016/j.aej.2016.04.038.
Kiryakova, V.S. 2000. Multiple(multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. Journal of Computational and Applied Mathematics, 118(1-2), pp.241-259. Available at: https://doi.org/10.1016/S0377-0427(00)00292-2.
Mathai, A.M., Saxena, R.K. & Haubold, H.J. 2010. The H-function: Theory and Applications. New York, NY: Springer. Available at: https://doi.org/10.1007/978-1-4419-0916-9.
Mathai, A.M. & Saxena, R.K. 1973. Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Berlin Heidelberg: Springer- § Verlag. Available at: https://doi.org/10.1007/BFb0060468. §.
Menaria, N., Nisar, K.S. & Purohit, S.D. 2016. On a new class of integrals involving product of generalized Bessel function of the first kind and general class of polynomials. Acta Universitatis Apulensis, 46, pp.97-105 [online]. Available at: https://www.emis.de/journals/AUA/pdf/74_1366_aua_2841701 .pdf [Accessed: 9 February 2022].
Mondal, S.R. & Nisar, K.S. 2017. Certain unified integral formulas involving the generalized modified k-Bessel function of first kind. Communications of the Korean Mathematical Society, 32(1), pp.47-53. Available at: https://doi.org/10.4134/CKMS.c160017.
CD
"O
CD
.N
"TO
CD c CD OT
>
"O
CO <
ro
CD OT
<л
Paneva-Konovska, J. 2007. Theorems on the convergence of series in generalized Lommel-Wright functions. Fractional Calculus and Applied Analysis, 10(1), pp.59-74 [online]. Available at: http://eudml.org/doc/11298 [Accessed: 9 February 2022].
> Rainville, E.D. 1960. Special Functions. New York: The Macmillan Company.
В Srivastava, H.M. & Daoust, M.C. 1969. Certain generalized Neumann expan-
° sions associated with Kampe-de-Feriet function. Proceedings of the Koninklijke ^ Nederlandse Akademie van Wetenschappen Series A-Mathematical Sciences, E 72(5), pp.449-457.
о Srivastava, H.M. & Manocha, H.L. 1984. A treatise on generating functions.
Chichester, West Sussex, England: E. Horwood & New York: Halsted Press. ISBN: 3 9780853125082.
_ Whittaker, E.T. & Watson, G.N. 2013. A Course of Modern Analysis, reprint of
^ the fourth (1927) edition. Cambridge University Press, Cambridge Mathematical Library. Available at: https://doi.org/10.1017/CB09780511608759.
<c
ИССЛЕДОВАНИЕ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ ОБОБЩЕННЫХ ФУНКЦИЙ ЛОММЕЛЯ-РАЙТА
Мохаммад Саид Кхан3, Сиразул Хакб, Мохаррам Али Кханв, Никола Фабианог
CD
_ a Университет медицинских наук Сефако Макгато,
о кафедра математики и прикладной математики,
г. Га-Ранкува, Южно-Африканская Республика
ш б Дж. С. Университет, департамент прикладных наук,
О г. Шикохабад, Фирозабад, штат Уттар-Прадеш, Республика Индия
g в Университет Умару Мусы Яр' Адуа, Кафедра математики и
статистики, г Катсина, Федеративная Республика Нигерия г Белградский университет, Институт ядерных исследований «Винча» - Институт государственного значения для Республики Сербия, г. Белград, Республика Сербия, корреспондент
РУБРИКА ГРНТИ: 27.23.21 Интегральные преобразования.
Операционное исчисление, 27.23.25 Специальные функции, 27.27.19 Функции многих комплексных переменных ВИД СТАТЬИ: оригинальная научная статья
Резюме: га
с
Введение/цель: Целью данной статьи является устано- со вление интегральных преобразований обобщенной функ- о. ции Ломмеля-Райта. а
о
Методы: Эти преобразования выражаются в терминах £ гипергеометрической функции Райта.
Результаты: В результате получены интегралы с тригонометрическими, обобщенными функциями Бесселя и Струве. ¡=
Е
Выводы: Вследствие применения данного метода получа- р ются различные интересные преобразования.
СТУДША О ИНТЕГРАЛНИМ ТРАНСФОРМАЦШАМА ГЕНЕРАЛИЗОВАНЕ ФУНКЦШЕ ЛОМЕЛА И РАJТА
ОБЛАСТ: математика
ВРСТА ЧЛАНКА: оригинални научни рад
Сажетак:
Увод/цил>: Циъ овог рада }есте успоставъаъе интеграл-них трансформаци]а генерализоване функци]е Ломела и Ра]та.
"О ф
N
Ключевые слова: обобщенные функции Ломмеля-Райта 2 и(2), преобразование Ханкеля, К-преобразование, функция ^ Райта, функция Уиттекера.
о
(Л
Е о
ч—
(Я
> "О
Мохамед Саид Кана, СиразулХакб, Мохарам Али Канв, Никола Фабианог
а Универзитет здравствених наука Сефако Макгато, ~
Департман за математику и приме^ену математику, Га-Ранкува, Република иужна Африка
б Универзитет и. С., Оде^е^е за приме^ене науке, Шикохабад
Фирозабад, Утар Прадеш, Република Инди]а в Универзитет Умару Муса Иарадуа, Департман за математику и
статистику, Катсина, Савезна Република Нигери]а г Универзитет у Београду, Институт за нуклеарне науке "Винча"- от
Институт од националног знача]а за Републику Срби]у, Београд Република Срби]а, ауторза преписку
(Я
2
<u
о
7
о >
<л
Методе: Интегралне трансформаци]е изражене су помогу Ра}тове хипергеометри]ске функци]е.
Резултати: Доби}ени су интеграли ко\и укя>учу]у тригоно-метри]ске, генерализоване Беселове и Струвеове функци-¡е.
Закъучак: Као последице ове методе доби]а]у се разне за-нимъиве трансформаци]е.
ш
^ Къучне речи: генерализоване функци]е Ломела и Ра]та
о J(z), Ханкелова трансформаци]а, К-трансформаци]а, Ра]-
° това функци]а, Витакерова функци]а.
<
о
0 Paper received on / Дата получения работы / Датум приема чланка: 10.02.2022. Manuscript corrections submitted on / Дата получения исправленной версии работы /
> Датум достав^а^а исправки рукописа: 14.03.2022.
¡< Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 16.03.2022.
© 2022 The Authors. Published by Vojnotehnicki glasnik / Military Technical Courier (http://vtg.mod.gov.rs, http://втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license <j (http://creativecommons.org/licenses/by/3.0/rs/).
CD
_ © 2022 Авторы. Опубликовано в "Военно-техническии вестник / Vojnotehnicki glasnik / Military ^ Technical Courier" (http://vtg.mod.gov.rs, http://втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией "Creative Commons"
1 (http://creativecommons.org/licenses/by/3.0/rs/).
q © 2022 Аутори. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (http://vtg.mod.gov.rs, httpV/втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се О у складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/).