Научная статья на тему 'A study of ozone anomaly of 2011 in the Northern Hemisphere based on aura satellite data'

A study of ozone anomaly of 2011 in the Northern Hemisphere based on aura satellite data Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
60
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ОЗОНОВАЯ ДЫРА / OZONE HOLE / ПЕРЕРАСПРЕДЕЛЕНИЕ ОЗОНА / REDISTRIBUTION OF OZONE / ФИЗИЧЕСКАЯ МОДЕЛЬ ЦИРКУМПОЛЯРНОГО ВИХРЯ / PHYSICAL MODEL OF CIRCUMPOLAR VORTEX

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Kashkin Valentine B., Rubleva Tatiana V.

In this work we have studied the appearance of analogue of the Antarctic ozone hole in the Northern hemisphere in March 2011. Possible reasons of this phenomenon were the low temperature in the polar region and intense solar flares. The solar activity led to changes in the atmospheric circulation. As a result, in the stratosphere for a while have any rotating circumpolar vortex in the form of a ring in mid-latitudes and low ozone content in the polar region. Our studies revealed a redistribution of ozone mass between the inner and outer part of the vortex with decreasing the total ozone content in the inner part and increases in the outer. A model of the formation of the circumpolar vortex based on atmospheric physics is proposed.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Kashkin Valentine B., Rubleva Tatiana V.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Озонная аномалия 2011 г. в Северном полушарии, по данным спутника aura

Изучен аналог антарктической озоновой дыры, возникший в Северном полушарии в марте 2011 года. Возможной причиной появления озоновой дыры была низкая температура в полярной области и интенсивные солнечные вспышки. Повышение солнечной активности привело к изменению в атмосферной циркуляции. В результате в стратосфере на некоторое время возник вращающийся циркумполярный вихрь в виде кольца в средних широтах и с низким содержанием озона в полярных. Наши исследования выявили перераспределение масс озона между внутренней и наружной частями вихря с уменьшением общего содержания озона во внутренней части и увеличением в наружной. Предлагается модель формирования циркумполярного вихря, основанная на законах физики атмосферы.

Текст научной работы на тему «A study of ozone anomaly of 2011 in the Northern Hemisphere based on aura satellite data»

Journal of Siberian Federal University. Engineering & Technologies, 2017, 10(6), 828-834

УДК 551.511.4, 551.513.2

A Study of Ozone Anomaly of 2011 in the Northern Hemisphere Based on Aura Satellite Data

Valentine B. Kashkin and Tatiana V. Rubleva*

Siberian Federal University 79 Svobodny, Krasnoyarsk, 660041, Russia

Received 17.03.2017, received in revised form 29.05.2017, accepted 16.07.2017

In this work we have studied the appearance of analogue of the Antarctic ozone hole in the Northern hemisphere in March 2011. Possible reasons of this phenomenon were the low temperature in the polar region and intense solar flares. The solar activity led to changes in the atmospheric circulation. As a result, in the stratosphere for a while have any rotating circumpolar vortex in the form of a ring in mid-latitudes and low ozone content in the polar region. Our studies revealed a redistribution of ozone mass between the inner and outer part of the vortex with decreasing the total ozone content in the inner part and increases in the outer. A model of the formation of the circumpolar vortex based on atmospheric physics is proposed.

Keywords: ozone hole, redistribution of ozone, physical model of circumpolar vortex.

Citation: Kashkin V.B., Rubleva T.V. A study of ozone anomaly of 2011 in the northern hemisphere based on aura satellite data, J. Sib. Fed. Univ. Eng. technol., 2017, 10(6), 828-834. DOI: 10.17516/1999-494X-2017-10-6-828-834.

© Siberian Federal University. All rights reserved Corresponding author E-mail address: tvrubleva@ksc.krasn.ru

Озонная аномалия 2011 г. в Северном полушарии, по данным спутника aura

В.Б. Кашкин, Т.В. Рублева

Сибирский Федеральный университет Россия, 660041, Красноярск, пр. Свободный, 79

Изучен аналог антарктической озоновой дыры, возникший в Северном полушарии в марте 2011 года. Возможной причиной появления озоновой дыры была низкая температура в полярной области и интенсивные солнечные вспышки. Повышение солнечной активности привело к изменению в атмосферной циркуляции. В результате в стратосфере на некоторое время возник вращающийся циркумполярный вихрь в виде кольца в средних широтах и с низким содержанием озона в полярных. Наши исследования выявили перераспределение масс озона между внутренней и наружной частями вихря с уменьшением общего содержания озона во внутренней части и увеличением в наружной. Предлагается модель формирования циркумполярного вихря, основанная на законах физики атмосферы.

Ключевые слова: озоновая дыра, перераспределение озона, физическая модель циркумполярного вихря.

The Antarctic Ozone Hole (AOH) has been observed for 30 years. It occurs every year between the months of September and December. The AOH is the central part of the circumpolar vortex (CV), which consists of a ring with elevated total ozone, reaching 400 Dobson units (DU). The diameter of the ring is about 9000 km, and its rotational speed is 10-20 m/s. Total ozone (TO) inside the ring sometimes drops to 80-90 DU. Global satellite data on the ozone layer available at the NASA site [1] have provided the basis for thorough research of the AOH and other similar atmospheric phenomena. They were used to develop a physical model of the formation of the AOH in the Southern Hemisphere [2].

Atmospheric structure similar to AOA, previously has not been observed in the Northern hemisphere. The conditions here are quite different from those in the Southern Hemisphere: the area of land surface is considerably larger, the total ozone concentration is higher, and the zonal velocity of ozone masses is significantly lower. Near the North Pole, as a rule, there is no area with extremely low temperatures, such as at the South Pole; the lowest temperature is observed over the continents (North America, Asia). The North hemisphere and Arctic ozone annual maximum falls in the middle of March.

For the 35 years of satellite monitoring, the only atmospheric phenomenon similar to the circumpolar vortex of the Southern Hemisphere was observed in the Arctic between March 5 and April 6, 2011 (Fig. 1). The inner part of the vortex ring, with a decreased TO, stretched between Canada and the Taimyr Peninsula. The "dip" in the center of CV in Fig. 1 is not a classical ozone hole, as the TO inside the ring is higher than the conditional threshold of 220 DU [3].

The phenomenon was discussed by some authors based of atmospheric chemistry approach [4, 5]. In this study we are focusing on atmospheric physics.

A possible reason for this anomaly might be weak planetary wave driving in February preceded cold conditions in the polar lower stratosphere in March (temperature below 196 K) [4, 6]. A significant solar activity was observed in February and March 2011 [7, 8]. The spatial distribution of the atmosphere

Valentine B. Kashkin andeationa V. Rubleva.A i^^itdyt^lfOzone A^nomaly of2011 in^l^ei^t^i^hi^rn Hemisphere Based...

pressure vnri^^^oAs aatoclytrd with solar activity add coamic rayaseems to t^^ihePn^iA^nedhy their influenodtjnh^e circuiationoOthe atmosphere ii. Becauen y^0nlue;r^o Tow fya aeme ^^lo^e was curled up in the rin&aod thn rn wand ramatic increase of the zonal angular velocity in polar region (60°-85° N) up to 20 m/s. The vortexrotaSiov wan onsOadle, itsahape vhacged dusmn tBn eariod. The planetary wave apporeneiy dv^^^^y ezi tin ^scs^i^cpd^evertii^ ^nA^f^i^iliP.

The graph of the avgular bnlocities of ehe zopel axone maiia inn in thu elrotosphese,nO°-65°

N, is for Vhv ^ e^tn d. beTween March V and Apeil 2001 SPiT 2). The .graph was phottedfollcwing the procedu^^drsca^t^rd etsewllbre OVO]. TVit provo dure baoee on a noacij^z^^c^nofglirtial digital space-born TO maps for conseauOiveOwo Cvys.InShe perieB, mrmmalTO vnlues ibdow 050 DU) were observed north ofCanaOalbr27dcys pdnFOT nveh^vs^^aetn^eeettl^iei^larch, TO dropped to 220-230 DU, and the degree of polar ozoie loea was ev^^i^tvc^.

In Moanh 2(disl ehe aveiaoe zonal angulai of ozont masstransfea ZC in the polar region

was 11 ° perhny.That wae aPmostiwice paghor Ohae pl = n.6°per day, t^t^^x^^^^n i^S^^o^^c^Si^^li^e^c eh March during 1997-2004 [10]. Peak velocity was near 20° per day on 10 March.

In spring 2011, a vast anticyclone was formed in the polar and adjacent regions of the Northern Hemisphere; the atmospheric pressure in the atmosphere close to the pole increased considerably. The air currents began to move from the pole to middle latitudes, in all directions.

Fig.l. Circumpolarvortex ir the ^rthern Hemisphere in March B °0n

Fig. 2. Variations in the angular velocity in the 60°-65° N region in the spring of 2011

- RH M

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 March 2011

Fig. 3. Meridional velocity in March 2011. Black colorcorresponds tooutflow of ozone from the polar latitudes tomiddlelatitudes

1n the middla 2fratcsjoteregthe air curneofs lt<sii£in 1o move alocg whhtheozzne fromtropkcal lnOi^ui^e;t 0o middlt andpslar laOitudet (pnoociple ohBrewer-Dobson) [2]. One can see Fig. 3, which nOnws mdtidisnn^f veiocrty comptneod of tine (tzotoe mars in Oho latitude oC 50i55°tnMarch. TCe movemenO from itc^ ttapics towards the pole in Fcg. f cori^eh!^i^<^ipnE5^(c nezcaltve values tC aaeed. B ud theouifOnw vfozone fromthepaiarlatitu2eoto middde latitudes (black color) dominates in Ma rch.

The Onflevting Jfd^^e the Eurth's rofetido (Cd2iotisforce) hampers these currents and deflects them to the east; thus, the currents move along a circular ptth Uader thcrs conlitco ns, the followang is valid [2]:

h2 Ap

m— + — = 2Q inmsmrn. (1)

ff Am *

kp

Tfe legt-ltand stdc Eilso contains pressure gradient can in the r dlreotion from the pole. The rlgh--

kr

hend ridp of il cortains Itlio Coriolis IToocis; hote in = 7.29f H°e5 rachans/s - tSre anguler spend oCEartP'r rotation.

The Co-iotis fosce and teerrifugal forests depnnst on Ioriru-e op; aa a certain ^;atit;ii(cL<s, tr0, the Coriolis fotce harthe highoct hampering effect In rhouOd ba e^:>zf)ers^d chat ait maeeeu ionnhid^ ozone) Connsfoeeen fram e^ds jfcczlzin negwn woufd conc ontzato cio fo f<s tHiie t^titic^cl^is, amO a CVting wouiddevdop. To find latitude^0,letus calculate a^derivative from(1) andequate ittozero

Frsin(e _

™ T -mVmcns( = 0. (2)

Rm cns ( iEiEciCirttritroriL (d) iit tcanzlormed tnto

3 r V2 V

x +SXpx + 2q = 0, x = ctrs q>, p =

irQ rRE R 8Qr R^ Paki-no? inter account tLtiaC discriminant D f ^ -c- g2 >0 and << q2,weobtain:

- 831 -

On March 9, W =19° per day, which corresponds to V ~ 18 m/s. Calculations based on formula (3) show that the highest TO is at latitude 90= 59°. The radius of the ring in Fig. 1, along the midline, is 3280 km. On the other hand, the latitude of the TO maximum can be found from the satellite data, using TO zonal means offered in [1].

Zonal means are TOC daily values averaged over the longitudes between -179.5° and 179.5°, in the 5-degree latitude range, e.g., between 52.5° and 57.5°. The graphs of zonal means for three days of the spring of 2011 are shown in Fig. 4. The curve for March 9 demonstrates that the highest TO be at latitude of 60°, which is close to the latitude 90 determined above. The part of the graph above 300 DU describes the ring profile averaged over longitudes. Analysis of the curve for March 9 suggests the redistribution of ozone between the inner part of the CV and the ring: the decrease in the ozone concentration in the inner part and the increase in the ring - an event similar to that occurring in the Southern Hemisphere in spring [2].

If subsequent events had developed according to the Southern Hemisphere scenario, the rotational speed of ring V would have decreased gradually, and ozone would have moved from the ring to the polar region. However, in April, the ozone anomaly shifted to Eurasia (Fig. 5). A possible reason for that could be the warming, which, according to [12], occurred in late March. Relatively low TO was observedabovea vast area,betweenArkhangelsk andYakutsk and betweenYekaterinburg andDixon, the totaloznne dropeingby 25-30%.

The reoond warmenn cenurredin enrlnAnrit. As cnn be seenOeem Fib- S,on ApeillO, TOwas the highest: at the ecle, while ihe lrwesl TO valnes hndshidtedsouthward. By that time, the ozone anomaly had shrunk conslderariy, coverinbnantofiaenoceUtnnWest Siberiaand the Klbsnoyessk Territory. In these regions, tha k>west SO valueneachedC2O DU; thrtwa sioweetAanthn minimalTOln the Arctic in mid-Marehg a posotbterens oтbelngozoeechemlcaldestmeeion.

V.V. Zvev et al 11 U] founC thnt deiimation ndtae sCeetosphnrie gaone layer -n h ibetia ia Aeesl 2011, had beee oausedba the euugtionoh Metapi Volcano m IndnnesieinNovombeu2010. Sn theeoiiowing

(3)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 lattitude N

Fig. 4. Latitude dependence of zonal es eans

April 10, 2011 TO, DU

I- 450

longitude E

Fig. 5. Ozone anomaly shifting to Siberia

months of2011, TOvaluesabove thegreaterpartofRussia andWebternEuropewerelowerthan their long-term annud averages.

Our study showeeehat natueal physicalfactershedcontrftutedcoevideraWyto thedove^mant of tie Noeth Hemisphere ozene anomdy2hl 1.

trences

]1] [Ioterneteesource].Aecess mode: URL: ftpf^^TE^r^c^^^.gsfe.nara.rov/hub/tmiddalc

12] Катюш В.Б.Ессеедование агтсрктического ооотдвогоциркумполярного вихря с использованием данных зондирования, Журнал СФУ. Техника и ттхнологии, 2015,2(8),2I8-2I6[KashkinV.B. AsSudyofthe Antarctic ozone circumpolar vortex using sateiiiteremotesensrng daea, J. Sib.Fod.Unlv. Eng. Tethnvl, a015i2,2k8-f4k(in I^c^s^^^ok

13]КашкинВ.р.,0убоеваТ]В .,Xai6onpfiP.r Арктик42кэ2ааонР8лбнлмалия 2011 года, Тезисы rEKsadtseXVII Вмеоосеиомкого сим.ааиума кллжаылсисекмы к экетккмклъных ус22(кях, Красноярск: ФГБУН КНЦ, 2014, 22 [Kashkin V.B., Rubleva T.V., Khlebopros R.G. The Arctic ozoneanamasyof2arli Absteactfor the 27oRussian Symposium Complex systems in extreme conditions, Kresnoyvrsk, 22 ]in Rxstieni]

Pi MannayG.4., Saolhh M.La RceM.sCal.Unpeeeedented Arctic ozone loss in 2011, Nature, 2011, 478 (7370)i410-enr. doi: lb.i^^l^^nmurelbi^ee.

[5] в.-ех. SmnUuCec, G. ЗиПе^ R. Ruhoke, T. aC ri. Arete wénter 0PT402000 at ihe brink (8an ozone hole^cpA^.iB-.ai ett. ,2htl,eB, OOtt^I^t^-^^d^Sh:

t6]Hutahhz M.M.,NewmanRA. andGaifinkel C.S.The Atikkivfrtexi nMaoch2fdl: akyntimcal persMectixe,Atmos. Ch.m. PO.1'., 2011, 11. It447a 01243. 0о1]^(^.а19е^[]^1^г^-^Пе11Г^'^-С011

[7] [Iakernetresaerae]. ^icc^t^siohode:URI^:]^t^OdV/ovv^,dOus^s^^]^ebrVei^.tuñrao/teí^i^tdOOCld3l^1^]:^^{i

[8] [tnOernet eeoourca]. Acaetsmoc^t;: URdthOtp:/te^tud^.s\chh.^oau.t^c^d^h^aoductr/doesnoaay-flux

[9]VpreSenpuko S., Ogurtbov M. Rdgkinal add témpora1 vyriabihtyof selyryitivity ¡^r^si^í^^a^i^ic coamicrayeíXeahtxaaCe ioseet atmosphereclrcurhticn,Rdv. Saace Rce.: 20г2,49,7Д0-183.

[10] Кашкин В.Б., Рублева Т.В. Зональное движение масс озона в нижней стратосфере по спутниковым данным, Оптика атмосферы и океана, 2014, 27 (9), 826-832. [Kashkin V.B.,

- 833 -

Rubleva T.V. Zonal movement of ozone masses in the lower stratosphere based on satellite data, Atmos. Ocean. Optics, 2014, 27 (9), 826-832 (in Russian)]

[11] Кашкин В.Б., РублеваТ.В. Изучение зональной циркуляции озона в нижней стратосфере средних широт на основе спутниковых данных, Материалы XXМеждународного симпозиума Оптика атмосферы и океана. Физика атмосферы, Новосибирск, 2014, 143-147 [Kashkin V.B., Rubleva T.V. A study of zonal circulation of ozone in the lower stratosphere of middle latitudes based on satellite data, Proceedings of the 20th International Symposium Atmospheric and Oceanic Optics. Physics of the atmosphere, Conference D Physics of the atmosphere, Novosibirsk, 2014, 143-147 (in Russian)]

[12] Ананьев Л.Б., Звягинцев А.М., Кузнецова И.Н., Нахаев М.И. Особенности общего содержания озона и циркуляции в нижней стратосфере в зимне-весенний период 2011 года, Труды Гидрометцентра России, M.: Гидрометеоиздат, 2012, 347, 44-60 [Ananyev L.B., Zvyagintsev A.M., Kuznetsova I.N., Nakhaev M.I. Total ozone concentration and ozone circulation in the lower stratosphere in winter and spring 2011, Proceedings of the Russian Meteorological Service, Moskow, 2012, 347, 44-60 (in Russian)]

[13] Зуев В.В., Зуева Н.Е., Савельева Е.С. и др. О роли извержения вулкана Мерапи в аномальном понижении ОСО над Томском в апреле 2011 г., Оптика атмосферы и океана, 2015, 28 (12), 1090-1094 [Zuev V.V., Zueva N.E., Savelyeva E.S. et al. On the role of the Merapi Volcano eruption in the abnormal decrease in TOC above Tomsk in April 2011, Atmos. Ocean. Optics, 2015, 28 (12), 1090-1094 (in Russian)]

i Надоели баннеры? Вы всегда можете отключить рекламу.