Научная статья на тему 'A low-power digitally controlled oscillator based on 65-nm CMOS technology'

A low-power digitally controlled oscillator based on 65-nm CMOS technology Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
161
18
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
65-НМ ТЕХНОЛОГИЯ / ИДК / ПОЛОЖИТЕЛЬНАЯ ОБРАТНАЯ СВЯЗЬ / ЭНЕРГОПОТРЕБЛЕНИЕ / БУФЕР / ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ CADENCE / 65-NM TECHNOLOGY / DCO / POSITIVE FEEDBACK / POWER CONSUMPTION / BUFFER / CADENCE SOFTWARE

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Akhmetov D.B., Al-Karkhi Omar J.

This paper contains the research results related to the Master thesis about the design of Dual band Differential Digital Ring oscillator (DRO) in two stages, describing the lower power consumption, smaller area, lower phase noise, linear frequency range and better frequency stability with variation of applied voltage, in addition to the investigation of the temperature variation effect. We have proposed a circuit using the 65-nm CMOS process with Radio Frequency (RF) transistors and the output frequency digitally controlled (by 4-bit (coarse), 3-bit (fine) tuning) as control code, for the low-band frequency range [1.487–3.021 GHz] and power consumption of 0.359 mW @ 2.42 GHz, and for the high-band frequency range [3.5–6.98 GHz] and the power consumption of 1.86 mW @ 6.023 GHz, the band gap between two bands equal to 500 MHz, the phase noise about –84.4 dBc/Hz @ 1MHz, and the jitter value of 4.335 ps, with FOM equal to –156.5 dBc/Hz.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A low-power digitally controlled oscillator based on 65-nm CMOS technology»

DOI: 10.18721/JCSTCS.10305 UDC 621.396

A low-power DIGITALLY CONTROLLED OSCILLATOR BASED ON 65-nm

CMOS TECHNOLOGY

D.B. Akhmetov 1, Omar J. Al-Karkhi2

1Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation;

2 Ministry of Science and Technology, Baghdad-Iraq

This paper contains the research results related to the Master thesis about the design of Dual band Differential Digital Ring oscillator (DRO) in two stages, describing the lower power consumption, smaller area, lower phase noise, linear frequency range and better frequency stability with variation of applied voltage, in addition to the investigation of the temperature variation effect. We have proposed a circuit using the 65-nm CMOS process with Radio Frequency (RF) transistors and the output frequency digitally controlled (by 4-bit (coarse), 3-bit (fine) tuning) as control code, for the low-band frequency range [1.487—3.021 GHz] and power consumption of 0.359 mW @ 2.42 GHz, and for the high-band frequency range [3.5-6.98 GHz] and the power consumption of 1.86 mW @ 6.023 GHz, the band gap between two bands equal to 500 MHz, the phase noise about -84.4 dBc/Hz @ 1MHz, and the jitter value of 4.335 ps, with FOM equal to -156.5 dBc/Hz.

Keywords: 65-nm technology; DCO; positive feedback, power consumption; buffer; cadence software.

Citation: Akhmetov D.B., Al-Karkhi Omar J. A low-power digitally controlled oscillator based on 65-nm cmos technology. St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and Control Systems. 2017, Vol. 10, No. 3, Pp. 53-58. DOI: 10.18721/JCSTCS.10305

ГЕНЕРАТОР, УПРАВЛЯМЫй цИфРОВЫМ КОДОМ, С ПОНИЖЕННЫМ энергопотреблением НА ОСНОВЕ 65 нм КМОП-ТЕХНОЛОГИИ

Д.Б. Ахметов ', Omar J. Al-Karkhi2

1Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Российская Федерация;

2 Ministry of Science and Technology, Baghdad-Iraq

Изложены результаты исследований, связанных с магистерской диссертацией о конструкции двухканального дифференциального генератора цифровых колец (DRO) в два этапа, что отвечает за большую часть потребления энергии, меньшую площадь, более низкий фазовый шум, линейный частотный диапазон и лучшую стабильность частоты с изменением приложенного напряжения в дополнение к исследованию эффекта изменения температуры. Предложена схема двухдиапазонного генератора, разработанного с использованием параметров КМОП-технологии с разрешением 65 нм. Выходная частота генератора управляется в диапазонах 1,49-3,02 ГГц и 3,50-6,90 ГГц 4-разрядным цифровым кодом для грубой настройки и 3-разрядным - для точной настройки. Потребляемая мощность составляет 0,36 мВт и 1,86 мВт соответственно в каж-

дом диапазоне; уровень фазовых шумов — не более минус 84,4 дБс/Гц при отстройке 1 МГц; значение джиттера — не более 4,3 пс; комплексный параметр качества (FOM) — минус 156,5 дБс/Гц.

Ключевые слова: 65-нм технология; ИДК; положительная обратная связь; энергопотребление; буфер; программное обеспечение cadence.

Ссылка при цитировании: Ахметов Д.Б., Al-Karkhi Omar J. Генератор, управля-мый цифровым кодом, с пониженным энергопотреблением на основе 65 нм КМОП-технологии // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. Т. 10. № 3. 2017. С. 53-58. DOI: 10.18721/JCSTCS.10305

The wireless systems are closely linked to the phenomenal success of the CMOS technology scaling that makes it possible to develop increasingly complicated systems on a single silicon chip while preserving performance and functionality at an ever lower cost, lower power consumption, smaller product size and an increaded unity gain of CMOS transistors [1, 2]. Concerning wireless systems, LC circuits in controlled voltage oscillators and large-sized capacitors in filters used in frequency synthesizers are less suitable for scalability. In contrast, all-digital phase-locked loops (ADPLL) based on digitally controlled oscillators (DCO) can be easily integrated into the digital system and have much less dependence on temperature, process and voltage variations. The ADPLL architecture still entails significant levels of power consumption

and silicon area in a nanoscale CMOS, which allows for further power and cost reductions. The focus is on analyzing and tracking the advances in the DCO base depending on its performance level. As we knew that the digitally controlled oscillator has many types and topologies and because the Differential Ring Digital- Controlled-Oscillator (DRO) is better in frequency stability with power supply voltage variations and has lower phase noise, a DRO using the 65-nm technology in a two delay stages is proposed.

In this paper, the differential Digital-Con-trolled-Oscillator (DCO) with a reconfigurable delay cell in each two stages of a digitally controlled ring oscillator is proposed. The DCO operates in two bands: 1.40—3.02 GHz and 3.50—6.98 GHz in comparison with the architecture proposed in [3]. Each band has 128

Fig. 1. DCO structure

Fig. 2. Schematic of the delay element

Fig. 3. Schematic of the «FBC»

sub-bands controlled by the 7-bit digital word, a new SCL-based delay cell is used which has a reconfigurable structure. Fig. 1 shows the proposed dual band DCO with a block diagram of delay elements.

Each delay element has the following pins: pin «B» defines the current band, pins «CO» — «C3» «F0», «F1», «F2» define the upper and lower bits of the digital control word. The schematic of the delay element is shown in Fig. 2

Contrary to the traditional trigger structure, a new feedback circuit «FBC» is included into the scheme. When the signal on pin «B»

is low, total propagation delay increases and the circuit operates at a lower frequency band. When the signal on pin «B» is kept high, the propagation delay decreases and frequency of oscillation rises. Block «CTT» contains a bank of transistors which are used to set the tail current of the differential pair. Schematic of the «FBC» is shown in Fig. 3.

Introducing a positive feedback into the trigger scheme allows using the same control signals for frequency control within each band. The frequency variations depending on the control word for low and high band are shown in Fig. 4 and Fig. 5, respectively.

Fig. 4. Frequency of oscillation vs digital control word (Low band)

Control word. [

Fig. 5. Frequency of oscillation vs digital control word (High band)

Comparison of this study with the 65-nm technology

Ref. Tech (nm) Vdd (V) Bit word Frequency range Power consumption Phase noise (dBc/Hz) Jitter (ps) FOM (dBc/Hz) Topology

This work 65 1 7 +1 Low band 1.48-3.02 GHz 0.359 mW @ 2.42 GHz -84.4 @ 1 MHz 4.335 -156.5 Dual band DRO

High band 3.5-6.98 GHz 1.86 mW @ 6.023 GHz

[5] 65 1 5 47.8-538.7 MHz 0.142-0.205 mW - 13.2 @ 64.4 MHz - Cascading cell base

[6] 65 1.8 14 5 GHz 2.16 mW -149.1 @ 10 kHz 0.42 - DRO

[7] 65 1.2 - 4.1-6.5 GHz 18 mW -145 @ 1 MHz - -186.6 QDCO

[8] 65 1.2 4 1.67-2.45 GHz 7 mW -78 @ 1 MHz - - L based DCO

[9] 65 1 14 5.01 GHz 3.7 mW -150 to -107 @ 1 MHz 0.45 -247.4 LC DCO

[10] 65 0.45 2 3.2 MHz 90 nW -95 @ 1 MHz. 6.39 -150.6 DCLO

[11] 65 0.5 - 43.5-152 MHz 59 ^W -103.4 @ 1 MHz - -155.7 Relaxation DCO

The low band and high band cover approximately 1.5 and 3.4 GHz frequency range respectively. The covered frequency range is enough to compensate the influence of the technological process and the temperature on the DCO tuning range.

The comparison of the proposed dual band DCO with the other study is summarized in Table.

Conclusion

The proposed DCO is designed in the 65-nm UMC CMOS technology. It achieves 0.35 mW and 1.86 mW power consumption at 2.4 and 5 GHz bands respectively. The expected jitter for both bands is not more than 4.33 ps and FOM is equal to 156.5 dBc/Hz. The phase noise is less than —84.4 dBc/Hz for both bands.

REFERENCES / СПИСОК ЛИТЕРАТУРЫ

1. Annema A.-J., Nauta B., van Langevelde R., Tuinhout H. Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-state Circuits, 2005, Vol. 40, No. 1, Pp. 132-134.

2. Lewyn L., Ytterdal T., Wulff C., Martin K. Analog circuit designin nanoscale CMOS

technologies. Proc. IEEE, Oct. 2009, Vol. 97, No. 10, Pp. 1687-1714.

3. Pahlavan S., Ghaznavi Ghoushchi M.B.

A 3.48 ps Jitter @ 1.45 GHz Fully Differential Dual band DCO with a new Reconfigurable Delay Cell. Iranian Conference on Electrical Engineering, 2016, 24th.

4. Souri M., Ghaznavi Ghoushchi M.B.

A 14.8 ps jitter low-power dual band all digital PLL with reconfigurable DCO and time-inter lined multiplexers. Analog Integr. Circuits Signal Process, 2015, Vol. 82, Pp. 381-392.

5. Ching-Che Chung, Chiun-Yao Ko, Sung-En Shen Built-in Self-Calibration Circuit for Monotonic Digitally Controlled Oscillator Design in 65-nm CMOS Technology. IEEE Transactions on Circuits and Systems — II: Express Briefs, 2011, Vol. 58, No. 3.

6. Yuyu Chang, John Leete, Zhimin Zhou, Morteza Vadipour, Yin-Ting Chang, Hooman Darabi A Differential Digitally Controlled Crystal Oscillator With a 14-Bit Tuning Resolution and Sine Wave Outputs for Cellular Applications. IEEE Journal of Solid-state Circuits, 2012, Vol. 47, No. 2.

7. Shiyuan Zheng, Howard C. Luong A 4.1-to-6.5 GHz Transformer-Coupled CMOS Quadrature Digitally-Controlled Oscillator with Quantization Noise Suppression. Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.

8. Ghorbel I., Haddad F., Barthelemy H., Rahajandraibe W., Loulou M., Mnif H. Digitally controlled oscillator using active inductor based on CMOS inverters. Electronics Letters, 2014, Vol. 50, No. 22, Pp. 1572-1574.

9. Ahmed Elkholy, Tejasvi Anand, Woo-Seok Choi, Amr Elshazly, Pavan Kumar Hanumolu A 3.7 mW Low-Noise Wide-Bandwidth 4.5 GHz Digital Fractional-N PLL Using Time Amplifier-Based TDC. IEEE Journal of Solid-state Circuits, 2015, Vol. 50, No. 4.

10. Dong-Woo Jee, Dennis Sylvester, David Blaauw, Jae-Yoon Sim. Digitally Controlled Leakage-Based Oscillator and Fast Relocking MDLL for Ultra Low Power Sensor Platform. IEEE Journal of Solid-state Circuits, 2015, Vol. 50, No. 5.

11. Yudong Zhang, Woogeun Rhee, Taeik Kim, Hojin Park, Zhihua Wang. A 0.35-0.5-V 18-152 MHz Digitally Controlled Relaxation Oscillator With Adaptive Threshold Calibration in 65-nm CMOS. IEEE Transactions on Circuits and Systems — II: Express Briefs, 2015, Vol. 62, No. 8.

Received / Статья поступила в редакцию 14.08.2017

СВЕДЕНИЯ ОБ АВТОРАХ / THE AuTHORS

AKHMETOV Denis B. АхМЕТОВ Денис Булатович

E-mail: akhmetov@spbstu.ru

AL-KARKHI Omar J.

E-mail: omarjalal81@gmail.com

© Санкт-Петербургский политехнический университет Петра Великого, 2017

i Надоели баннеры? Вы всегда можете отключить рекламу.