Научная статья на тему 'A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in Ck,1'

A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in Ck,1 Текст научной статьи по специальности «Математика»

CC BY
7
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
finite difference method / 3D Laplace equation / cubic grids on parallelepiped / 14-point averaging operator / error estimations / конечно разностный метод / 3D уравнения Лапласа / кубические сетки в параллелепипеде / 14-точечный оператор усреднения / оценки погрешности

Аннотация научной статьи по математике, автор научной работы — Adiguzel A. Dosiyev

A three-stage difference method for solving the Dirichlet problem of Laplace’s equation on a rectangular parallelepiped is proposed and justified. In the first stage, approximate values of the sum of the pure fourth derivatives of the solution are defined on a cubic grid by the 14-point difference operator. In the second stage, approximate values of the sum of the pure sixth derivatives of the solution are defined on a cubic grid by the simplest 6-point difference operator. In the third stage, the system of difference equations for the sought solution is constructed again by using the 6-point difference operator with the correction by the quantities determined in the first and the second stages. It is proved that the proposed difference solution to the Dirichlet problem converges uniformly with the order O(h⁶(|ln h|+1)), when the boundary functions on the faces are from C7,1 and on the edges their second, fourth, and sixth derivatives satisfy the compatibility conditions, which follows from the Laplace equation. A numerical experiment is illustrated to support the analysis made.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Разностный метод высокой точности при решении задачи Дирихле для уравнения Лапласа на прямоугольном параллелепипеде с граничными значениями в Ck,1

В работе предлагается и обосновывается трехэтапный разностный метод для решения задачи Дирихле уравнения Лапласа на прямоугольном параллелепипеде. На первом этапе приближенное значение суммы из чистых четвертых производных решения определяется 14-точечным разностным оператором на кубической сетке. На втором этапе приближенное значение суммы из чистых шестых производных решения определяется простейшим 6-точечным разностным оператором. На третьем этапе система разностных уравнений для искомого решения конструируется также с помощью 6-точечного разностного оператора с коррекцией по результатам первого и второго этапов. Доказано, что предложенная разностная схема решения для задачи Дирихле сходится со скоростью O(h⁶(|lnh| + 1)), когда граничные функции на гранях из C7,1, а на ребрах их вторые, четвертые и шестые производные удовлетворяют условию согласования, вытекающего из уравнения Лапласа.

Текст научной работы на тему «A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in Ck,1»

Научный отдел

МАТЕМАТИКА

Известия Саратовского университета. Новая серия. Серия: Математика

Механика. Информатика. 2024. Т. 24, вып. 2. С. 162-172

Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024:

vol. 24, iss. 2, pp. 162-172

https://mmi.sgu.ru

https://doi.org/10.18500/1816-9791-2024-24-2-162-172 EDN: WNJQOX

Article

A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in

A. A. Dosiyev

Western Caspian University, 31 Istiglaliyyat St., Baku AZ1001, Azerbaijan Adiguzel A. Dosiyev, [email protected], https:/orcid.org/0000-0001-9154-8116

Abstract. A three-stage difference method for solving the Dirichlet problem of Laplace's equation on a rectangular parallelepiped is proposed and justified. In the first stage, approximate values of the sum of the pure fourth derivatives of the solution are defined on a cubic grid by the 14-point difference operator. In the second stage, approximate values of the sum of the pure sixth derivatives of the solution are defined on a cubic grid by the simplest 6-point difference operator. In the third stage: the system of difference equations for the sought solution is constructed again by using the 6-point difference operator with the correction by the quantities determined in the first and the second stages. It is proved that the proposed difference solution to the Dirichlet problem converges uniformly with the order O(h6(| lnh\ + 1)), when the boundary functions on the faces are from C7'1 and on the edges their second, fourth, and sixth derivatives satisfy the compatibility conditions, which follows from the Laplace equation. A numerical experiment is illustrated to support the analysis made.

Keywords: finite difference method, 3D Laplace equation, cubic grids on parallelepiped, 14-point averaging operator, error estimations For citation: Dosiyev A. A. A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in Ck'1. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 2. pp. 162-172. https://doi.org/10.18500/1816-9791-2024-24-2-162-172 EDN: WNJQOX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Научная статья УДК 518.517.944/947

Разностный метод высокой точности при решении задачи Дирихле для уравнения Лапласа на прямоугольном параллелепипеде с граничными значениями в Cк,г

А. А. Досиев

Западно-Каспийский университет, Азербайджан, AZ1001, г. Баку, ул. Истиглалият, д. 31

Досиев Адигезал Ахмед оглу, доктор физико-математических наук, преподаватель кафедры механики и математики, [email protected], https://orcid.org/0000-0001-9154-8116

Аннотация. В работе предлагается и обосновывается трехэтапный разностный метод для решения задачи Дирихле уравнения Лапласа на прямоугольном параллелепипеде. На первом этапе приближенное значение суммы из чистых четвертых производных решения определяется 14-точечным разностным оператором на кубической сетке. На втором этапе приближенное значение суммы из чистых шестых производных решения определяется простейшим 6-точечным разностным оператором. На третьем этапе система разностных уравнений для искомого решения конструируется также с помощью 6-точечного разностного оператора с коррекцией по результатам первого и второго этапов. Доказано, что предложенная разностная схема решения для задачи Дирихле сходится со скоростью O(h6(\ lnh\ + 1)), ^гда граничные функции на гранях из C7,1, а на ребрах их вторые, четвертые и шестые производные удовлетворяют условию согласования, вытекающего из уравнения Лапласа.

Ключевые слова: конечно разностный метод, 3D уравнения Лапласа, кубические сетки в параллелепипеде, 14-точечный оператор усреднения, оценки погрешности

Для цитирования: Dosiyev A. A. A highly accurate difference method for solving the Dirichlet problem of the Laplace equation on a rectangular parallelepiped with boundary values in Ck,x [Досиев А. А. Разностный метод высокой точности при решении задачи Дирихле для уравнения Лапласа на прямоугольном параллелепипеде с граничными значениями C] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2024. Т. 24, вып. 2. С. 162-172. https:// doi.org/10.18500/1816-9791-2024-24-2-162-172, EDN: WNJQOX

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0)

Introduction

A highly accurate method is one of the powerful tools for reducing the number of unknowns, which is the main problem in the numerical solution of differential equations to get reasonable results. In the most of approximations to get highly accurate results the difference operators with a high number of patterns are used, which increase the number of bandwidth of the difference equations. It is obvious that the complexity of the realization methods for the difference equations increases depending on the number of the bandwidth of the matrices of these systems of difference equations. As it was shown by R. E. Tarjan [1], in the case of the Gaussian elimination method the bandwidth elimination for n x n matrices with the bandwidth b, the computational cost is of order O(b2n).

One of the effective methods of increased accuracy which uses the simplest finite difference approximation by correcting the right-hand-side term with the application of the high order differences of the numerical solution of differential equation, was proposed by L. Fox [2] without theoretical justification. Some modification of Fox's approach was given by Woods [3]. A theoretical justification of Fox's method was presented by Volkov in [4,5]. From Volkov's results in the case of the Dirichlet problem for Poisson's equation on a rectangular domain n, it follows that the approximate solution obtained by the q-th correction of the right-hand side of the 5-point

scheme, the convergence order in the uniform metric is O(h2q), h is the mesh step, when the exact solution u has (2q + 2)-th derivatives on n satisfying a Holder condition with exponent A e (0,1), i.e., u e C2q+2'A(n).

In Berikelashvili and Midodashvili [6] it is proved that the corrected 5-point difference scheme on the rectangular grid is convergent at the rate O(|h|m), |h|2 = h2 + h|, in the discrete L2-norm, provided that the exact solution belongs to the Sobolev space W2m, m e [2,4].

In Volkov [7] a two-stage difference method for solving the Dirichlet problem for Laplace's equation on a rectangular parallelepiped was proposed. It was assumed that the given boundary functions on the faces of a parallelepiped have the sixth derivatives satisfying the Holder condition, and on the edges, besides the continuity they satisfy the compatibility condition for second derivatives, which results from the Laplace equation. It was proved that by using a simple 7-point scheme in two stages the order of uniform error can be improved up to O(h4lnh-1). From the conditions imposed on the boundary functions in [7], it does not follow as it was mistakenly declared in [6] that the exact solution belongs to C6,x (n).

Moreover, as it was shown in [8], the theoretical justification of the difference schemes needs special attention when the boundary values of a solution belong to the Holder classes C21-1,1 and 21 — 2 order derivatives satisfy the conjunction condition followed from the Laplace equation. In this case, some of 21 order derivatives may be unbounded near the boundary of the solution domain, and for the rate of convergence of the 27-point difference solution, when l = 3, O(h6(|| lnh| + 1)) of order is obtained.

In this paper, a three-stage difference method constructed a special combination of 15-point and 7-point schemes for solving the Dirichlet problem of Laplace's equation on a rectangular parallelepiped is proposed and justified. It is proved that the obtained difference method converges uniformly with an order of O(h6(|| lnh| + 1)) when the boundary functions on the faces are from C7,1, and on the edges their second, fourth, and sixth derivatives satisfy the compatibility conditions which follows from the Laplace equation.

A numerical experiment is illustrated to support the analysis made.

1. The Dirichlet problem on rectangular parallelepiped

Let R = {(x2, x2,x3) : 0 < x < a, i = 1,2,3} be an open rectangular parallelepiped, Tj (j = 1,2,..., 6) be its faces including the boundaries such that r^ for j = 1,2,3 (for j = 4,5,6) belongs to the plane xj = 0 (to the plane xj-3 = aj-3). Let r = u6=1 r be the boundary of the parallelepiped, let y be the union of the edges of R, and let rj = Tj\y and yuv = n Tv. We say that f e Ck,x(D) if f has continuous k—th derivatives on D satisfying a Holder condition with exponent A e (0,1], which is a Lipschitz condition when A = 1.

We consider the boundary value problem

Au = 0 on R, u = on rj, j = 1, 2,..., 6, (1)

where A = d2/dx2 + d2/dx2 + d2/dx2, pj are given functions.

Assume that

Pj e C7'1 (rj), j = 1, 2,..., 6, (2)

Pu = Pv on y^v , (3)

t+t+se-- - '4)

д4 ^ + д4 ^ _ д4 + д4 ^ dt4 + dt2, dt2 _ dt4 + dt2 dt2

д ^U _ д ^V , д ^U /ГЧ

+ Л+2 iU2 _ + Л+2iU2 0n YUV,

v?

дЧ + д6^ + д6^ _ д6^у + + д6^ n dt6 + дИ„ + д*4. дt2 дй at4 + д*6, + at4, дИ, 1uv ' (D)

where 1 < ^ < v < 6, v — ^ = 3, t^v is an element in y^v, t^ and tv is an element of the normal to y^v on the face and rv, respectively.

Let ) = 3{j/3} + 1, where {a} is the fractional part of a.

Lemma 1. In the open parallelepiped R it holds that

d4u(xi,x2,X3) = d4u(xi,x2,X3) + d4u(xi,X2,X3) +2d4u(xi, x2,X3) (7)

dX4 " d<(j) d<(j+i) dxJ(j )dxJ(j+i)'

d6u(x1?x2, X3) d6u(xi, x2, X3) d6u(xi?x2, X3)

j 6(j ) 6(j+1)

_3d6u(xi,x2,X3) _ 3d6u(xi,X2,X3) (8)

dx6(j ) dx6(j+1) dx6(j) dx6(j+i)

where u ¿s the solution to the Dirichlet problem (1).

Proof. The proof directly follows from the Laplace equation. □

On R, we define the functions

vk = vk(xi ,X2,X3) = -dx2h . k = 2,3 (9)

j = i j

where u is the solution to the Dirichlet problem (1).

Lemma 2. The functions (9) coincide with the unique continuous solution on R of the boundary value problems

Avk = 0 on R, vk = Vj on r, j = 1, 2,..., 6, k = 2, 3, (10)

where

,2 V2 (x x ) dVj (x6(j) ,x6(j+i)) + d4Pj (x6(j) ,x6(j+i)) +

= (x6(j) ,x6(j+i)) =-dx4-+-dx-+

, d4Pj (x6(j) ,x6(j+i)) (11)

+ dx2 dx2 ' (11) °X6(3)°X6(3+i)

3 , 3 (x x ) d 6 Pj (x6(j ),x6(j+i)) d 6 Pj (x6(j ) ,x6(j+i)) ( )

= (x6(j) ,x6(j+i)) =--dx4 dx2---dx2 dx4-• (12)

dx6(j ) dx6(j+i) dx6(j) dx6(j+i)

Proof. On the basis of (2)-(6), Theorem 2.1 in [9] it follows that a solution u of problem (1) belongs to the class C7,x(R), 0 < A < 1. Since any order derivatives of a harmonic function are also harmonic, the functions vk, k = 2,3 satisfy Laplace's equation. The boundary conditions in (10) with (11) and (12) follow from (1), Lemma 1 and (9). Then by Theorem 3.1 in [9] each of the functions vk, k = 2, 3 is the unique continuous solution on R of problem (10). □

Lemma 3. Even order derivatives in the form

'u

dx2Pdx2q dx8-2P-2q ' of the solution u of problem (1) are bounded on R.

0 < p < 4, 0 < q < 4 - p, (13)

Proof. Let ш = дгб .We have

Дш = 0 on R, ш = Ф7 on Г,, j = 1, 2,..., 6,

where

Ф,

д У,

j = 2, 3, 5,6,

д6 ^

Ф дхб

_ з - г, ^

д6^7 д6 ^

дх|дх2 дх^дх| дх® '

j = 1,4.

(14)

(15)

From (1)-(6) follows that the boundary functions , j = 1,2,..., 6 defined by (14) and (15) satisfy the conditions

e Ci,i(rJ), ^ = $v on y^v.

Then, on the basis of Theorem 4.1 in [9] the pure second-order derivatives of the function u are bounded in R. Then

sup

(Ж1,Ж2 ,Ж3)gR

д 8u

sup

(Ж1,Ж2 ,Ж3)gR

sup

(Ж1,Ж2 ,Ж3)GR

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

дх?

д 8u

sup

(Ж1 ,Ж2 ,Ж3)gR

д 2 ш

дх?дх2 д 8u

дх? д 2 ш

< œ,

дх?дх2

= sup

(Ж1 ,Ж2 ,Ж3)gR

= sup

(Ж1 ,Ж2 ,Ж3)GR

дх2 д 2 ш

дх2

<,

<.

Similarly, by taking ш = д;!, and ш derivatives in (13) are proved.

дЖ| the boundedness of the remainder even order

3 □

Lemma 4. Let u be the solution of problem (1), p(xi, x2, x3) be the distance from the current point of R to its boundary and let d/dl = aid/dxi + «2d/dx2 + «3d/dx3, ai + a2 + a3 = 1 be the l — directional differentiation operator. Then

д10 u^i, х2, хз )

д/10

< CoP 2(х?, х2, хз), (х?, х2, хз) G R,

(16)

where c0 is a constant independent of the direction l of the operator d/dl.

Proof. Since any tenth-order derivative of u can be obtained by two times differentiating some of the derivatives of the form (13), on the basis of Lemma 3 from [10, Chapter 4, Sec. 3] and Lemma 3, we have

max max 0^00 o^v <10—^

д10u^i, х2, хз)

дх^дх^дх®

10—^—v

< C1 р2(х1 ,х2,хз), (х1 ,х2,хз) G R.

(17)

From (17) follows the inequality (16).

2. O(h6|| ln h\) order accurate approximate solution

Consider a cubic mesh with the mesh size h > 0 formed by the planes x^ = 0, h, 2h, ...(i = 1,2,3). Assume that a^/h > 4 (i = 1,2,3) are integers. Let Dh be the set of mesh nodes, Rh = R n Dh, j = rj n Dh, rh = r n Dh, rjh = rj n Dh, and ^ = r^ U ... U ^. We put R = Rh U ^,

Rh = RhU Vh. Let Rh C Rh be the set of nodes of Rh lying at a distance of kh away from the boundary r of R. It is clear that k = 1, 2, (h), where N(h) = [min{ai, a2, a3}/(2h)].

For the grid functions on Rh, we consider the 6-point difference operator A as

16

Au(x1 ,x2,x3) = 6 up,

p

=i(i)

and the 14-point difference operator S as

1 ( 6 14 I

Su(xi, X2, X3) = — ( 8 UP + XI Uq I ,

\ p=l(i) q=7(3) J

where the sum ^(k) is taken over the grid nodes that are at a distance of \Jkh from the point (xi,x2,x3), up and uq are the values of u at the corresponding grid points. Consider two systems of grid equations

vh = Avh + gh, on Rh, vh = 0 on r'h, (18)

vh = AVh + gh, on Rh, Vh = 0 on rh, (19)

where gh and gh are given functions and |gh| < gh on Rh.

Lemma 5. The solutions vh and Vh to systems (18) and (19) satisfy the inequality

|vh| < vh on Rh.

Proof. The proof of Lemma 5 follows from the comparison theorem (see [11, Chapter 4]). □

2.1. The first stage

Let vh be a solution of the following finite difference problem

vh = Svh on Rh, vh = fy on rjh, j = 1, 2,..., 6, (20)

where fy, j = 1,2,..., 6 are functions defined in (11).

Let c,c1 ,c2,... denote positive constants independent of the nearby multiplier, of which some possibly have identical values.

Lemma 6. The following estimation holds

max _ |vh - v21 < c1 h4(| lnh| + 1),

(X1,X2 ,x3 )eRh

where v2 is the function (9) when k = 2 and vh is the solution of the system of grid equations (20).

Proof. By Lemma 2,

Av2 = 0 on R, v = fy2 on r, j = 1, 2,..., 6,

where functions fy2 defined by (11). For the error function

el = vh - v2, (21)

we have

e2 = Seh + (Sv2 - v2) onRh, e2h = 0 on rh.

Let eh be represented as

eh = eh'1 + eh-2 + ... + (h>, (22)

2 k

where <sh' , 1 < k < N(h) is the solution of system

2,k o 2,k , >fc T-, 2,k n -n

eh' = Seh' + Ck on Rh, eh =0 on ^,

with

k = i Sv2 — v2 on Rk, \0 on Rh\Rh.

By virtue of Lemma 4 in [12], we have

max |4'k| < 5k max |Sv2 — v2|, 1 < k < N(h). (23)

(xi ,X2'X3 )eRh (xi 'X2 ,X3

To estimate Sv2 — v2 on Rh, for k = 1, 2, ...,N(h), first we note that, from (9) and Lemma 4 follows

д6V2(xi ,X2 ,X3)

д/6

< C2

д10 u(xi ,X2 ,X3 )

д/10

< C3P 2 (xi, X2, X3), (xi, X2, X3) G R. (24)

Let x0 = (x10 ,x20 ,x30) be a node of the grid Rh0 C Rh, where k0 be an arbitrary integer number 2 < k0 < N(h) and let r6(x1,x2,x3; x0) be the Lagrange remainder corresponding to this point in Taylor formula

v2(X1, X2, X3) = P5(x1, X2, X3; X0) + r6(x1, X2, X3; X0), (25)

where

Sp5(X10, X20, X30; X0) = v2(X10, X20, X30). (26)

Then on the basis of (24), we have

h6 = ^ (k0h)2 C4 ^

From (25)-(27), we obtain

Sr6 (xio, X20, X30; xo) < c^ _ C4—2. (27)

h4

max |Sv2 — v21 < C4, 2 < k < N(h). (28)

(xi ,X2 ,X3)GRh k2

Let x0 = (x10,x20,x30) be a node of the grid Rh C Rh, and the nodes of operator S lie at the distance h or \p3h from this point. We estimate r6 at the nodes of the operator S. To do this we take a node (x10 — h, x20 — h, x30 + h) and consider the continuous function

J2(s) _ v2 ^xi0 - ' X20 - ' X30 + , < s <

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

(29)

of one variable s. By estimation (24), we have

6v (s)

ds6

< c5 (л/э^ - s) , 0 < s^h. (30)

The function

sss

¿6 _ Г6 ( Xi0 - , X20 - , X30 + X0

is the remainder term of the representation of the function (29) around the point s = 0 by Taylor's formula with the fifth order polynomial.

By using integral form of the remainder term and (30), we obtain (see [8])

(s s s \

xio - ,X20 - ,X30 + x0j < cah4. (31)

For the remaining nodes of the operator S the estimation (31) can be obtained analogically. Since the maximum norm of the operator S is equal to one, we have

|Sr6(xi0,x20,x30;xo)| < C7h4. (32)

By (25), (26) and (32), we obtain

max |Sv2 - v21 < c8 h4. (33)

(xi ,X2 ,X3)gRh

On the basis of (21)-(23), (28) and (33), we have

N (h)

max |vh - v21 < eg h4 V 1 < cih4 (|| ln h| + 1)

(xi ,X2 ,X3)gRh f—i k

2.2. The second stage

Let V3 be a solution to the following finite difference problem

v3 = Av3 on Rh, = on rjh, j = 1, 2,..., 6, (34)

where j j = 1,2,..., 6 are functions defined by (12). Lemma 7. On Rh, it holds that,

max ^ |v3 - v31 < c2h2(| lnh| + 1), (35)

(X1,X2 ,X3 )ER/fl

where v3 is the function (9) for k = 3, v3 is a solution to system (34). Proof. By Lemma 2, we have

Av3 = 0 on R, v3 = on r, j = 1, 2,..., 6, (36)

where functions define boundary values in (12), and from (2)-(6) it follows that

G C1,1 (r), 0 < A < 1, j = 1,2,..., 6, (37)

^ = ^ on y^v , (38)

on the basis of (36)-(38) that satisfy the conditions of Theorem 5.1 in [9] which follows estimation (35). □

2.3. The third stage

Let v2 and v^ be the solution of the difference problems (20)) and (34) respectively. We approximate the solution of the given Dirichlet problem (1) on the grid Rh as a solution u h of the following difference problem

h4 2 h6

—v2--

36 h 720

u h = ^ on rjh, j = 1, 2,..., 6. (40)

uh = Auh - — v2 - —-on Rh, (39)

Theorem 1. Under the conditions (2)-(6), the estimation

max ^ |uh — u| < c3h6(|| lnh| + 1), (41)

(xi ,X2'X3)GRh

is valid, where u is the solution of the Dirichlet problem (1) uh is the solution of system (39), (40).

Proof. Under the smoothness properties of the boundary values specified in (2)-(6), the solution u of the Dirichlet problem (1) has eighth-order partial derivatives that are continuous on R, and by using Taylor's formula with the remainder term in the Lagrange form for each

(x1 ,x2 ,x3) e Rh, we obtain

h4 h6

u(x1, X2, X3) = Au(x1, X2, X3) — 36v2 — 720v3 — r(x1, X2, X3), (42)

where vk, k = 2,3 are the functions defined by (9)

max |r(x1,x2, X3)| < c4h8. (43)

(xi ,x2 ,x3)eR

We put

£h = Uh - u on Rh,

where uh is the solution of the finite difference problem (39), (40).

From (39) and (42), and taking into account that uh = u = pj on Tjh, we obtain the following

system of difference equations for the error eh:

h4 h6

eh = Aeh + 36 (v2 — vl) + 720 (v3 — vh) + r on Rh, (44)

eh = 0 on rh. (45)

On the basis of Lemma 6 , Lemma 7, and the estimation (43)), we obtain

h4 o o. h6

36(V2 - V2) + 72Ô(v3 - V3)+ Г

< C5h8(|| ln h|| +1),

where c5 = max {c1 /36, c2/720, c4}.

Furthermore, from Lemma 5 it follows that for the solution <sh of problem (44), (45) the following estimation is true

kh| < (46)

where ëh is a solution of the problem

ëh = Aëh + C5h8(| lnh| + 1) on Rh, ëh > 0 on rh. (47)

It is easy to check that the function ëh = c5h6(|| lnh| + 1)(12 - r2), where l = y/al + a2 + a3, and r = у/x2 + x2 + x2 is a solution of problem (47). Then from (46), follows (41). □

3. Numerical results

Let R = {(xi, X2, X3) : 0 < хг < 1, i = 1, 2, 3}, and let Г, j = 1, 2,..., 6 be its faces.

Au = 0 on R, u = ^(x1,x2,x3) on Г, (48)

where

p(xb x2, x3) = e3xi cosh(4x2) cos(5x3) + (x8 - 28x1x2 + 70x1x| - 28x2x6 + x8) tan-1 ^^ + 170 Научный отдел

+ (8x[x2 - 56x5x3 + 56x1 x2 - 8xixf) ln yjxf + xf,

is the exact solution of problem (48) and ^ G C7,1 (r). We use the following notations:

lU - U

max |Uh — U

Em

|Uh - U2-m y^h

||Uh - U2-(m+1) '

where U is the trace of the exact solution of the continuous problem on , and Uh is its approximate value obtained by the proposed method.

The numerical results given in Table show that the maximum error of the approximate solution obtained by the proposed method absolute values convergent of order O(h6 lnh), since

26 >En > 26n/(n + 1).

Table. Numerical results for Prob em (48)

h = 2-n maxnh |u2-n — u| En 26 n/(n + 1)

2- -3 1.537D - 07 48.394 48.000

2- -4 3.176D - 09 60.231 51.200

2" -5 5.273D - 11 62.625 53.333

2- -6 8.420D - 13 63.071 54.857

2" -7 1.335D - 14 - -

Conclusion

A new three-stage difference method with an accuracy of order O(h6(| lnh| + 1)), where h is mesh size, is proposed and justified by using one fourth-order and two second-order schemes for the approximate solution of the 3D Laplace's equation. It is assumed that the boundary functions on the faces are from C7,1, and on the edges, their second, fourth, and sixth derivatives satisfy the compatibility conditions, which follows from the Laplace equation.

The idea of this method can be used to design a new scheme with an order of convergence O(h8 (| ln h| + 1)), when ^ G C9'1 (r-), j = 1,..., 6.

Moreover, from the estimation (41) the multiplier | ln h| can be removed by replacing in (2) the condition ^ G C7'1 (r) with the condition ^ G C8'A(r), 0 < A < 1.

The proposed method can be applied when parallelepiped is used as one of the covering figures in some version of domain decomposition methods [13], in the composite grids method for problems in polyhedra and a prism with polygonal base (see [14, 15]). Furthermore, this method can be used to highly approximate the derivatives of the unknown solution of Laplace's equation (see [16-19]).

References

1. Tarjan R. E. Graph theory and Gaussian elimination. In: Bunch J. R., Rose D. J. (eds.) Sparse Matrix Computations. Academic Press, 1976, pp. 3-22. https://doi.org/10.1016/B978-0-12-141050-6. 50006-4

2. Fox L. Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proceedings of the Royal Society A, 1947, vol. 190, pp. 31-59. https://doi.org/10.1098/rspa.1947.0060

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Woods L. C. Improvements to the accuracy of arithmetical solutions to certain two-dimensional field problems. The Quarterly Journal of Mechanics and Applied Mathematics, 1950, vol. 3, iss. 3, pp. 349-363. https://doi.org/10.1093/qjmam/3.3.349

4. Volkov E. A. Solving the Dirichlet problem by a method of corrections with higher order differences.

I. Differentsial'nye Uravneniya, 1965, vol. 1, iss. 7, pp. 946-960 (in Russian).

5. Volkov E. A. Solving the Dirichlet problem by a method of corrections with higher order differences.

II. Differentsial'nye Uravneniya, 1965, vol. 1, iss. 8, pp. 1070-1084 (in Russian).

6. Berikelashvili G. K., Midodashvili B. G. Compatible convergence estimates in the method of refinement by higher-order differences. Differential Equations, 2015, vol. 51, iss. 1, pp. 107-115. https://doi.org/10.1134/S0012266115010103

7. Volkov E. A. A two-stage difference method for solving the Dirichlet problem for the Laplace equation on a rectangular parallelepiped. Computational Mathematics and Mathematical Physics, 2009, vol. 49, iss. 3, pp. 496-501. https://doi.org/10.1134/S0965542509030117

8. Volkov E. A., Dosiyev A. A. A highly accurate homogeneous scheme for solving the Laplace equation on a rectangular parallelepiped with boundary values in Ckl. Computational Mathematics and Mathematical Physics, 2012, vol. 52, iss. 6, pp. 879-886. https://doi.org/10.1134/S09655425120 60152

9. Volkov E. A. On differential properties of solutions of the Laplace and Poisson equations on a parallelepiped and efficient error estimates of the method of nets. Proceedings of the Steklov Institute of Mathematics, 1969, vol. 105, pp. 54-78.

10. Mikhailov V. P. Partial Differential Equations. Moscow, Mir, 1978. 396 p. (in Russian).

11. Samarskii A. A. The Theory of Difference Schemes. Marcel, Dekker Inc., 2001. 761 p.

12. Volkov E. A. Application of a 14-point averaging operator in the grid method. Computational Mathematics and Mathematical Physics, 2010, vol. 50, iss. 12, pp. 2023-2032. https://doi.org/10. 1134/S0965542510120055

13. Smith B., Bjorstad P., Gropp W. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996. 238 p.

14. Volkov E. A. On the smoothness of solutions to the Dirichlet problem and the method of composite grids on polyhedra. Proceedings of the Steklov Institute of Mathematics, 1981, vol. 150, pp. 71-103.

15. Volkov E. A. A method of composite grids on a prism with an arbitrary polygonal base. Proceedings of the Steklov Institute of Mathematics, 2003, vol. 243, pp. 1-23. https://doi.org/10.1046/j. 1468-2982.2003.00539.x

16. Volkov E. A. On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on the rectangular parallelepiped. Russian Journal of Numerical Analysis and Mathematical Modelling, 2004, vol. 19, iss. 3, pp. 269-278. https://doi.org/10.1515/ 1569398041126500

17. Dosiyev A. A. The high accurate block-grid method for solving Laplace's boundary value problem with singularities. SIAM Journal on Numerical Analysis, 2004, vol. 42, iss. 1, pp. 153-178. https://doi.org/10.1137/S0036142900382715

18. Dosiyev A. A. The block-grid method for the approximation of the pure second order derivatives for the solution of Laplace's equation on a staircase polygon. Journal of Computational and Applied Mathematics, 2014, vol. 259, pt. A, pp. 14-23. https://doi.org/10.1016/j.cam.2013.03.022

19. Dosiyev A. A., Sarikaya H. A highly accurate difference method for approximating the solution and its first derivatives of the Dirichlet problem for Laplace's equation on a rectangle. Mediterranean Journal of Mathematics, 2021, vol. 18, art. 252. https://doi.org/10.1007/s00009-021-01900-8

Поступила в редакцию / Received 23.03.2023 Принята к публикации / Accepted 29.08.2023 Опубликована / Published 31.05.2024

i Надоели баннеры? Вы всегда можете отключить рекламу.