Научная статья на тему 'A colorimetric method is a useful parameter for the characterization of the product and it has been used both to typify and to set a market price'

A colorimetric method is a useful parameter for the characterization of the product and it has been used both to typify and to set a market price Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
78
16
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
HONEY / SPECTROSCOPY / TRANSMITTANCE / ABSORPTION COEFFICIENT / CAROTENE / XANTHOPHYLL / FLAVONOL / FLOWER NECTAR / AMINO ACIDS / AMINO NITROGEN / POLYPEPTIDES / PROTEINS / FRUCTOSE / БАЛ / СПЕКТРОСКОПИЯ / өТКіЗУ ЕСЕЛіГі / ЖұТЫЛУ ЕСЕЛіГі / КАРОТИН / КСАНТОФИЛЛ / ФЛАВОНОЛ / ГүЛ БАЛШЫРЫНЫ / АМИНқЫШқЫЛЫ / АМИНО-АЗОТ ПОЛИПЕПТИДТЕР / АқУЫЗДАР / ФРУКТОЗА / МЕД / КОЭФФИЦИЕНТ ПРОПУСКАНИЯ / КОЭФФИЦИЕНТ ПОГЛОЩЕНИЯ / ЦВЕТОЧНЫЙ НЕКТАР / АМИНОКИСЛОТ / АМИНО-АЗОТ / ПОЛИПЕПТИДЫ / БЕЛКИ

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Kozhamzharova A.S., Kozhamzharova L.S., Yesimseiitova Z.B.

Was developed to measure the color of rosemary honeys in the solid state, without liquefaction. The color of 20 solid samples of rosemary honeys was measured by reflectance spectroscopy with white and black background in cells of 1 cm pathlength. The Kulbelka-Munk theory of turbid media was applied to calculate the spectral distribution of reflectivity, internal transmittance, and coefficients of absorbance and scattering of light. From these spectral distributions, 2 different types of honey were found. The honey colors measured from reflectivity and internal transmittance are well grouped.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A colorimetric method is a useful parameter for the characterization of the product and it has been used both to typify and to set a market price»

that reveal bond position or stereochemistry. Mass spectrometry moieties of glycoproteins or glycolipids can be released by

and NMR spectroscopy have also become invaluable in purified enzymes— glycosidases that specifically cleave O- or N-

deciphering oligosaccharide structure. The oligosaccharide linked oligosaccharides or lipases that remove lipid head groups.

REFERENCES

1 S. K. Sawhney, Randhir Singh Eds, Introductory Practical Biochemistry, Narosa Publishing House, New Delhi. 2006. - P 24.

2 S. Ramakrishnan, K. G. Prasannan, R. Rajan, Textbook of Medical Biochemistry, Orient Longman, Madras, Latest Editon. 2008. - P 46.

3 Text Book of Biochemistry for Medical Students, 9th ed. New Delhi : UBS Publisher's Distributors Ltd., 2003. - P 66.

4 Textbook of Medical Biochemistry, 5th ed. New Delhi : Jaypee Brothers Medical Publishers (P) Ltd , 2002. - P 24.

5 Theory and Problems of Biochemistry, 2nd ed. New Delhi : Tata McGraw-Hill Publishing Company Ltd., 2003. - P 100.

6 U. Satyanarayana, Biochemistry, Books and Allied (P) Ltd., Calcutta, Latest Edition. 2009. - P 54.

7 Van Nostrand's scientific encyclopedia by Glenn D. Considine, editor-in-chief ; Peter H. Kulik, associate editor 10th edit, 2008. - P 64.

8 Varley's Practical Clinical Biochemistry, 6th ed. Delhi : CBS Publishers & Distributors, 2002. - P 38.

9 Биохимия // З. С. Сеитов. - АЛМАТЫ: АГРОУНИВЕРСИТЕТ, 2000. - 897 с.

А.СДожамжарова, Л.СДожамжарова,* С.О.Ордабеков, З.Б.Есимсеиитова**

СЖАсфендияров атындагы Казац улттыц медицина университетI *М.Х.Дулати атындагы Таразмемлекетт!куниверситет! **Эл-Фараби атындагы Казац улттыцуниверситетI

БИОХИМИЯЛЬЩ ЭД1СТЕР АРЦЫЛЫ ПОЛИПЕПТИДТЕРД1, АЦУЫЗДАРДЫ ЖЭНЕ АМИН^ЫШ^ЫЛДАРЫН САНДЬЩ ЖЭНЕ

САПАЛЬЩ СЭЙКЕСТЕНД1РУ

ТYЙiн: Макалада зерттелш отырган улпнщ ею физикалык уздш нысандар жылжымалы жэне стационарлы фазалармен эрекеттесуге мумгандш беретшдМ туралы карастырылган. Yлгiде, кеп жагдайда белшуге бешм келетш б1рнеше компоненттердщ коспасы кел^ршген. Yлrimц кейбiр молекулалары сорбентпен тыгыз байланысты, олар уакыттыц кеп мезплш сорбентте еткiзедi жэне хроматографиялы; жуйе аркылы козгалганда бэсецдейдъ Сорбентке элсiз аффиндык танытатын молекулалар, жылжымалы фазада мейлiнше уза; уакыт табылып, жуйеден элюирленедi немесе жылдам жойылып кетедi.

ТYЙiндi сездер: Хроматография, жылжымалы фаза, стационарлы фаза, бiрнеше компоненттердiц коспасы, компоненттер, катты жэне суйык жылжымайтын фаза, сорбент, аналит, элюент.

А.С.Кожамжарова, Л.С.Кожамжарова,* С.О.Ордабеков, З.Б.Есимсеиитова**

Казахский Национальный Медицинский Университет имени С.Д.Асфендиярова *Таразский Государственный Университет имени М.Х.Дулати **Казахский Национальный университет имени аль-Фараби

КАЧЕСТВЕННАЯ И КОЛИЧЕСТВЕННАЯ ИДЕНТИФИКАЦИЯ АМИНОКИСЛОТ, ПОЛИПЕПТИДОВ И БЕЛКОВ ЧЕРЕЗ БИОХИМИЧЕСКИЕ МЕТОДЫ

Резюме: В статье рассматривается: исследуемый образец позволяет взаимодействовать с двумя физически отличными объектами - подвижной фазой и стационарной фазой. В образце чаще всего содержится смесь нескольких компонентов, подлежащих разделению. Некоторые молекулы образца предпочтительно связаны сорбентом, они проводят больше времени в сорбенте и замедляются при их движении через хроматографическую систему. Молекулы, которые проявляют слабую аффинность к сорбенту, проводят больше времени с подвижной фазой и более легко удаляются или элюируются из системы.

Ключевые слова: Хроматография, подвижная фаза, стационарная фаза, смесь нескольких компонентов, компоненты, твердая и жидкая неподвижная фаза, сорбент, аналит, элюент.

УДК 547.455.632+543.432:380.13

A.S.Kozhamzharova, L.S.Kozhamzharova,* Z.B.Yesimseiitova**

Asfendiyarov Kazakh National medical university *M.Kh. Dulaty TarazState University ** al-Farabi Kazakh National University

A COLORIMETRIC METHOD IS A USEFUL PARAMETER FOR THE CHARACTERIZATION OF THE PRODUCT AND IT HAS BEEN USED

BOTH TO TYPIFY AND TO SET A MARKET PRICE

Was developed to measure the color of rosemary honeys in the solid state, without liquefaction. The color of 20 solid samples of rosemary honeys was measured by reflectance spectroscopy with white and black background in cells of 1 cm pathlength. The Kulbelka-Munk theory of turbid media was applied to calculate the spectral distribution of reflectivity, internal transmittance, and coefficients of absorbance and scattering of light. From these spectral distributions, 2 different types of honey were found. The honey colors measured from reflectivity and internal transmittance are well grouped.

Keywords: honey, spectroscopy, transmittance, absorption coefficient, carotene, xanthophyll, flavonol, flower nectar, amino acids, amino nitrogen, polypeptides, proteins, fructose.

The colors obtained from reflectivity and those obtained from reflectance with black background show high linear correlation (r2> 0.99). As a practical application, measurements of reflectance with black background in cells of 1 cm pathlength can be used to determine the color of these honeys in the solid state. The color of honey is a useful parameter for the characterization of the product /1/, and it has been used both to typify and to set

a market price. Color can vary from water white to nearly black. Some honeys are colorless and transparent (Robinia pseudoacacia); others are white after crystallization (Rosmarinus officinalis, Citrus sp.); most multifloral honeys are amber, but some are very dark, nearly black in color (honeydew honeys of Quercus sp.). Carotenes, xanthophylls, and flavonols from floral nectar are responsible for the color of honey /2, 3/. Likewise, the

296

BecrnMK Ka3HMy №3-2017

mineral content from the soil, which passes into the nectar of the plant, gives color to the honey. The amino acid content is greater in dark- than in light-colored honeys; the dark honeys contain tyrosine and tryptophan, which are not present in the light honeys /4/. The color of honey does not remain unalterable over a long period. Slow solidifications induce a temporary darkening of color. The honey clears again within a few days, and reveals a greater lightness associated with a weaker color purity /5/. The development of color under storage is due to several factors: the combination of tannates and other polyphenols with the iron from containers and processing equipment; the Maillard color reactions of reducing sugars with substances containing amino nitrogen (amino acids, polypeptides, and proteins), and the instability of fructose in acid solution (caramelization). A great variation in the darkening rate is found among different honeys, depending on their composition: acidity, nitrogen content, and fructose content /6/.

The use of old honeycomb and heat treatment also darken the product /7/. Honey color can be assessed by different procedures. The "universal melloscope" method has been used by beekeepers since the beginning of the century. This empirical method is based on the visual comparison between the honey and the standards plates. The Pfund Color Grader, a more improved visual comparison system, incorporates a standard amber glass wedge with which the liquid honey contained in a wedge-shaped cell is visually compared /8/. The reading is made in a millimetric scale, and usually ranges between 1 and 140 mm. The Pfund Index allows a commercial classification to be established with 7 color grades: water white, extra white, white, extra light amber, light amber, amber, and dark amber. Based on the Pfund system, an apparatus resembling a melloscope has been developed containing different glass color standards /9/. The I2 /KI standard solutions of crescent concentrations have also been used.

However, these solutions must be prepared frequently and they undergo decoloration. The Lovibond visual box comparator is an instrument for measuring honey color and incorporates 2 chromatic discs. The results are expressed in the form of the Pfund Index /10/. he spectrophotometry technique based on tristimular methodology is more objective and does not depend on the observer. It has been used to characterize the U.S. Department of Agriculture color standards /9/. The International Commission of Illumination (CIE) System uses the X, Y, and Z tristimulus values and gives a projection of the spatial vector representative of a determined color on the CIExy chromaticity plane, and the brightness Y% on the perpendicularaxis /11/. Some researchers have adopted this method to measure the color of liquid honeys /12-14/.

a = 1 /2[R + (R0 - R

b = (a2-ir

Rx=a-b

K/S = (l -R^f/SR^ K= S(a- I) S = 1/b ar ctgh [([ -

Tr = (a-Rj2-b:

where Rg = reflectance of white background, R = reflectance of sample with white background, Ro= reflectance of sample with black background, R= reflectance of sample of such thickness that further increases in thickness fail to change the reflectance, called reflectivity, K = absorption coefficient, S= scattering coefficient, ar ctgh = inverse hyperbolic cotangent function, and Ti= internal transmittance coefficient. From these values of the reflectances R, Ro, and Rand the internal transmittance, Ti, and according to CIE expressions, we calculated the colorimetric parameters: the tristimulus values and color coordinates. These calculations were made by using the C illuminant and the 2° CIE 1931 standard observer, in order to compare our results with those previously obtained for fluid honeys by other researchers, and also by using the D65 illuminant, suggested by CIE as a

The CIELAB space /15/ is a more uniform color space, which determines the chromatic coordinates L*, a*, and b* (L*, lightness; a*, redness when positive or greenness when negative; b*, yellowness when positive or blueness when negative). This system has been adopted by some researchers /16-20/. Finally, others have evaluated the results obtained by way of the Lovibond, CIE Yxy (1931), and CIELAB (1976) methods /21/. All of these measurements were made on liquid honey. Color analysis has always been performed with liquefied samples, perhaps because of the low transmittance values of the solids. Given that honey undergoes a natural process of crystallization, the objective of our research was to measure the color of rosemary honey in the solid state, without liquefaction, by determining the reflectivity through the application of the Kubelka-Munk theory for turbid media. Research methods

Twenty samples of crude honey were analyzed. Sensory assessment, melissopalinology, and physicochemical analysis (moisture, optical rotation, electrical conductance, ash content, 5-hydroxymethylfurfuraldehyde, diastase activity, pH, free acidity, and lactone acidity) served to identify their floral origin (Rosmarinus officinalis honey) /22/. The honeys came from different localities of Arago'n (Spain), and the samples, taken directly from the containers that the beekeepers use for the storage of honey, were kept in plastic bottles and stored at -20°C. Before the color analysis, the samples were incubated at 37°±1°C for 8 h to homogenize them. Subsequently, they were kept at room temperature for 1 h, and their color was measured. Apparatus

Measurements were taken by a Hunterlab Miniscan Spectrocolorimeter, standardized by way of a light trap and a standard white tile supplied by the manufacturer, and controlled by "MS Color" software on a Hyundai PC 386 SX/20. Spectrophotometric Measurements

The clear honey samples, previously homogenized, werecarefully poured into Petri plates (29 mm diameter and 10 mm height). They were measured with a white background (X = 81.84; Y = 86.80; Z = 93.90 for D65 illuminant and 10° observer), and without background, equivalent to a black background (X = 0.00; Y = 0.00; Z = 0.00). The measurements for each background were repeated 5 times and averaged. Plates were positioned over the measurement aperture of the apparatus, which was positioned upward. Reflectance measurements were taken between 400 and 700 nm, at 10 nm intervals. After both spectra were obtained for each sample, the Kubelka-Munk theory was applied to calculate reflectivity (R ) and internal transmittance (Ti) spectra, as well as spectral distributions of absorption (K) and scattering (S) coefficients for 10 mm thickness, by using the following equations /23/ :

RK)yRDiy = (S + K)/S

,)/*> K)

substitute for the C illuminant, and the 10° CIE 1964 standard observer, which is closer to the appearance of honey in commercial containers.To obtain the dominant wavelength (d) in the CIExy chromaticity diagram, we calculated the value A = (yb-yw)/(xb- xw) for the stimulus of the spectrum locus, between 565 and 580 nm with intervals of 1 nm; xb, yb are the chromaticity coordinates of the boundary (spectral) stimulus, and xw,yw are the chromaticity coordinates of the achromatic standard (C or D65). We obtained a relation, d= f(A), which is a third-degree polynomial, with r2> 0.999.The excitation purity, pe , of the chromaticity of a given stimulus (x,y) is calculated from the following equation: pe=(x - xw)/(xb- xw) = (y - yw)/(yb-yw). The expression for pe to be used in calculations is whichever of the 2 given forms that can be determined with the

least rejection error. The values xb and yb were calculated by linear interpolation between the chromaticity coordinates of the spectral stimulus at integer values of in nm, supplied by CIE /24/.

Result and Discussion

Spectral Parameters. We studied the reflectance spectra with white background (R), the reflectance spectra with black background (Ro ), and the reflectance spectra for infinite thickness (R), or reflectivity. At all wavelengths (400-700 nm), the values of R are

greater than the values of Ro and R. We observed that the values of the spectra for R and for Ro are similar in the blue and green-blue zones (400-500 nm), and the values of R are greater than the values of Ro at wavelengths between 500 and 700 nm, although they are nearer to Ro values than to R values. By way of example, Figure 1 shows these 3 spectra for one sample. For some samples (Figure 2), spectral distributions of the scattering coefficients (S) show small variations with a minimum in the blue-green zone (400-500 nm), but for others they yield a maximum zone (See sample 36 H). The scattering coefficients of the other honeys ranged between those of these 2 samples.Distributions of the absorption coefficient (K) show similar values for all the samples, i.e., higher in the blue zone (400-450 nm) and falling rapidly until reaching the orange zone (up to 600 nm). They decrease slowly in the red zone (600-700

nm) (Figure 3). These differences in the behavior of the absorption and diffusion (scattering) coefficients are shown in the K/S spec-tral distributions (Figure 4). Some honeys with low scattering have a K/S coefficient of >1 over the entire spectrum, whereas others have a K/S coefficient of <1 for the yellowred zone (570-700 nm) of the spectrum. The variations in the distributions of the absorption coefficients are small between samples, whereas the variations in the distributions of the diffusion coefficients are larger. The differences in color between rosemary honeys are due to light scattering in the interior of the sample, which creates changes in the reflectance spectra and, principally, in the internal transmittance spectra (Figure 5). This light scattering is responsible for the small color differences observed by reflection in the crude rosemary honeys and is explained in the following section.

750

Figure 2. Spectral distributions of the scattering Figure 5. Spectral distributions of the internal

coefficients for honey samples 36 H and 48 T. transmlttance for honey samples 36 H and 48 T.

Table 1. Statistical distribution of color!metric parameters

CIE 1931 std obs.-C ilium. CIE 1964 std obs. -D65 ilium.

Parameter Ft,' Ti" T~ FL Ti

Y% Max. 46.692 19 422 84.14 45.930 18.769

Mean 34.764 12 877 61.40 34.083 12 367

Mir. 19.689 7.264 34.12 19.216 6.700

X Max. 0.374 0510 0.429 0.380 0.521

Mean 0.356 0.420 0.369 0.361 0.427

Mir. 0.337 0.367 0.337 0.342 0.343

y Max. 0.379 0.468 0.435 0.388 0.4S7

Mean 0.366 0 425 0.381 0.377 0.430

Mir. 0.351 0 375 0.347 0.368 0.384

Kj, nm Max. 577.8 582.0 578.0 574.2 578.6

Mean 576.3 577.7 576.5 572.2 574.0

Mir. 574.1 576.0 575.0 570.2 572.2

P% Max. 33.3 98.7 63.3 34.6 98.9

Mean 25.6 58.8 33.0 26.5 59.9

Mir. 16.4 31 0 15.6 16.8 31 .a

L* Max. 74.0 51 2 93.5 73.5 50.4

Mean 64.9 42.2 82.0 64.3 41.3

Mir. 51.5 32.4 65.1 50.9 31.1

a* Max. 0.38 5.22 1.50 3.44 10 19

Mean -1.12 0 56 -1.25 1.01 3 65

Mir. -2.41 -2.56 -2.68 -0.74 0.79

b* Max. 23.39 59.92 77.14 23.39 59.50

Mean 18.35 34.00 32.70 18.53 33.64

Mir. 13.51 1679 15.86 13,44 16 47

C* Max. 23.91 59.99 — 23.65 59.52

Mean 18.91 34 07 — 18.54 33.91

Mir. 13.69 16.79 — 13.46 16.57

H* Max. 99.43 93.55 — 93.15 88.45

Mean 93.66 88.75 — 87.13 83.20

Mir. 37.89 74.75 — 81.63 69.37

" Rx: calculated from reflectivity. b Ti: calculated from Infernal transmlttance.

" T*: calculated from transmlttance of liquid honey by Mateo et al. [21).

Colorimetric Parameters. The statistical distribution of the colorimetric parameters is shown in Table 1. We obtained results similar to those of Mateo et al. /21/ for CIE 1931 standard

observer and C illuminant. All the parameters calculated from R are within the intervals obtained by those researchers, except

those related to the lightness, Y% and L*, because of the different

measurement methods used for liquid and solid honeys.

These values can serve to classify the crude rosemary honeys by means of color, principally by application of reflectivity values, because they are well determined in a small zone of the color space (See CIExy chromaticity diagrams, Figure 6, left and right). On the other hand, colors measured as a function of the internal transmittance have a high dispersion in the diagrams. Representation in the CIE a*b* diagram is similar, as shown in Figure 7, left and right. When colorimetric parameters obtained from reflectivity are compared with those obtained from reflectance with white and black backgrounds, we observe high linear correlations (r2 > 0.99) between the values from reflectivity and those from black background reflectance. However, regressions between the reflectivity parameters and the reflectancewith- white-background parameters are second-

degree polynomials. The aforesaid differences among spectral values for

R, Ro, and R can explain these distinct kinds of correlations. These spectral differences involve differences between colors arising from reflectivity and from reflectance with white background that are greater than differences between colors arising from reflectivity and from reflectance with black background. Consequently, a higher-degree polynomial shows a better correlation.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Conclusion

On the basis of the above results, and as a practical application, we conclude that measurements of reflectance withblack background in cells of 1 cm pathlength can be used to determine the color of rosemary honeys in the solid state.

REFERENCES

10 Cherchi, A., Porcu, M., Spanedda, L., Tuberoso, C.I.G., Cosentino, S., & Palmas, F. (1995) Sci. Aliment. 24, - P 523- 534.

11 Amiot, M.J., Aubert, S., Gonnet, M., & Tacchini, M. (1989) Apidologie 2000, - P 115-125.

12 Bowles, L.H., & Gullett, E.A. (1976) J. Inst. Can. Sci. Technol. Aliment. 2009, - P 125-129.

13 Phadke, R.P. (1962) Indian Bee J. 2004, - P 59-65.

14 Gonnet, M., Aubert, S., & Ferry P. (1986) Apidologie 17, - P 49-62.

15 Crane, E. (1975) Honey: A Comprehensive Survey, 2nd Ed., International Bee Research Assoc., Heinemann, London, UK. 2004, - P 59-65.

16 Gomez Pajuelo, A. (1995) Vida Api'cola 73, 2013. 2004, - P 20-25.

17 Sechrist, E.L. (1925) U.S. Dept. Agric. Circ. 364, 2004, - P 1-7.

18 Brice, B.A., Turner, A., & White, J.W. (1956) J. Assoc. Off. Agric. Chem. 39, 2000. 2004, - P 919-937.

19 Official Methods of Analysis (1990) 15th Ed., AOAC, Arlington, VA. 2000, - P 119-137.

20 International Commission of Illumination (1931) C.I.E. Proceedings of the Eighth Session, Cambridge Univ. Press, Cambridge, UK. 2004, P 91-93.

21 Aubert, S., & Gonnet, M. (1983) Apidologie 14, 2014. - P 105-118.

300

Вестник КазНМУ №3-2017

22 Huidobro, J.F., & Simal, J. (1984) Anal. Bromatol. 36, 2000, - P 225-245.

23 Rodríguez, C. (1987) Vida Api'cola, 16, 2004, - P 24-29.

24 C.I.E. Colorimetry (1986) 2nd Ed., Publication CIE, 15.2., Vienna, Austria 2006, - P 24-29.

25 Ortiz, A., & Silva, M.C. (1990) Cuad. Apic. 8, 2008, - P 24-298-11.

26 Frí'as, I., Hardisson, A., Corrales, J., & Munoz, V. (1991) Alimentation 10, 93-98.

27 Lozano, M., Montero de Espinosa, V., Osorio, E., Sabio, E., & Sa'nchez, J. (1994) Alimentaria 253, 2003, - P 39-41.

28 Aubert, S., Gonnet, M., & Jourdan, P. (1994) Apidologie 25, 2000, - P 303-313.

29 Echa'varri, J.F., Negueruela, A.I., & Salas, J.P. (1992) Ibe'rica Actual Tecnol. 339, - P.101-103.

30 Mateo, R., Jime'nez, M., & Bosch, E. (1992) J. AOAC Int. 75, 2003. - P 537-542.

31 Pe'rez-Arquillue', C., Conchello, P., Arin~o, A., Juan, T., & Herrera, A. (1994) Food Chem. 51, 2004, - P 207-210.

32 Judd, D.B., & Wyscezki, G. (1975) Color in Business, Science and Industry, Wiley, New York, NY. 2008, - P 24-29.

33 Wyszecki, G., & Styles, W.S. (1982) Color Science, 2nd Ed., Wiley, New York, NY. 2006, - P 34-40.

А.С. Цожамжаpова, Л.С. Kожамжаpова,* З.Б. Есимсеиитова**

С.ЖАсфендияров атындагы Цазац улттыц медицина университетi *М.Х.Дулати атындагы Таразмемлекеmmiкунuверсumеmi **Эл-Фараби атындагы Цазац улттыцунuверсumеmi

КОЛОРИМЕТРИЯЛЬЩ ЭД1С - еН1МД1 ТИПИФИЦИРЛЕУДЕ ЖЭНЕ БЭСЕКЕДЕ еН1МД1 СИПАТТАУДА БAFAНЫ К¥РУ^Ы

KОЛДAНЫЛFAН ПАЙДАЛЫ ПАРАМЕТР

ТYЙiн: Ма;алада розмариндш балдыц ;атталмаган ;атты куйдеп TYpiнiц TYсiн елшеу жумыстары эзipленiп ЖYpгiзiлгенi ;арастырылган. Кара жэне а; TYCтi pецдегi арасы 1 см болатын узындьщтагы уяшьщта розмариндш балдыц ;атты Yлгiсiнiц 20 TYсi зеpттелiндi. Шагылдыргыштьщ зейiнiмен спектральды таралу ;абшетш жэне жарьщтыц таралуын есептеу Yшiн, iшкi 0ткiзу еселiгiмен жутылу еселiгi Кульбелки-Мунктыц лайлы орта теориясы ;олданылды. Бул спектральды таралу балдыц 2 TYpлi TYpiнен табылды. Бал гушнщ таралу ;абше^мен iшкi етгазу еселiгi жа;сы топтастырылган.

ТYЙiндi сeздеp: бал, спектроскопия, 0ткiзу еселiгi, жутылу еселiгi, каротин, ксантофилл, флавонол, гул балшырыны, амин;ышк;ылы, амино-азот полипептидтер, акуыздар, фруктоза.

А.С. Кожамжаpова, Л.С. Кожамжаpова,* З.Б. Есимсеиитова**

Казахский Национальный Медицинский Университет имени С.Д.Асфендиярова *Таразский Государственный Университет имени М.Х.Дулати **Казахский национальный университет имени аль-Фараби

КОЛОРИМЕТРИЧЕСКИЙ МЕТОД - ПОЛЕЗНЫЙ ПАРАМЕТР ДЛЯ ХАРАКТЕРИСТИКИ ПРОДУКТА И ИСПОЛЬЗОВАНО

ТИПИФИЦИРОВАТЬ И УСТАНОВИТЬ ЦЕНУ НА РЫНКЕ

Резюме: В статье разработана для измерения цвета розмариновых медов в твердом состоянии без сжижения. 20 цветов твердых образцов розмариновых медов измеряли с помощью спектроскопии отражения с белым и черным фоном в ячейках длиной 1 см. Для расчета спектрального распределения отражательной способности, внутреннего коэффициента пропускания и коэффициентов поглощения и рассеяния света была применена теория мутных сред Кульбелки-Мунк. Из этих спектральных распределений были найдены 2 разных вида меда. Цвета меда, измеренные от отражательной способности и внутреннего коэффициента пропускания, хорошо сгруппированы.

Ключевые слова: мед, спектроскопия, коэффициент пропускания, коэффициент поглощения, каротин, ксантофилл, флавонол, цветочный нектар, аминокислот, амино-азот, полипептиды, белки, фруктоза.

ОЭК 581.9 (575.2) (04)

A.C.Kожамжаpова, Л.CKожамжаpова,* З.Б.Есимсеиитова**

С.Ж.Aсфендияpов aтындasы K,œaц улттыц медицинa унивеpситетi *МХ.Дулaти aтындasы Tapa3 мемлекеттк унивеpситетi **Эл-Фapaби aтындasы Ka3aq улттыц унивеpситетi

КЕТПЕН ТАУ ЖОТАСЫНЫН, ТеМЕНП ЖAFЫ ФЛОРАСЫ еС1МД1КТЕРШЩ МЕДИЦИНА^Ы ЖЭНЕ ШAPУAШЫЛЫKТAFЫ МАНЫЗЫ

Кетмен тау жотасыныц mвменгi жагы флорасында шаруашылыц-пайдалы турлершц квптеген саны кiредi: жемдiк всiмдiкmердiц 75 mYрi бар, сондай-ац, астыц, декоративт1 балды, техникалыц всiмдiкmердiц толыц цатары царастырылган.

Tyümdi свздер: эфup-Marni, aщы жусaн, кэдтг мыцжaпыpaц, Ambrosia artemisifolia, Cichorium intubus.

Кетмен тaу жотaсындa apaMraen eсiмдiктерiнiн эр TYрлi дэрежеде бешмделуш ескере отырып, В.В.Никитиннщ клaссификaциясынa сaй (1983) келеС топтapды бeлемiз: сегетaльды турлер^ сегетaльды-pудеpaльды, pудеpaльды-сегетaльды, pудеpaльды жэне кaлдыкты топтapFa. ОлapFa дэршк, дэpумендiк, илж, мaл asbi^m, сэндiк жэне эфиp-мaйлы eсiмдiктеp жaтaды. Бiз, eзiмiздiн флоpaдaFы aстpa тyкымдaстapдын (Asteraceae) кeптеген eкiлдеpiн кapacтыpдык„ coFaH бaйлaнысты пaйдaлы eсiмдiктеpге бaйлaнысты эдебиттерде зеpттелгендiгi туpaлы кapacтыpылFaн.

КYрделiгYЛдiлер iшiнде эфир - майлы всiмдiктер кед таралган. Оларга жататындар: кэдiмгi TYЙмешетен (Tanacetum vulgare), бшк аддыз (Inula helenium), Австрия жусан (Artemisia austriaca), ащы жусан (Artemisia absinthium), ермен жусан (Artemisia vulgaris), шыралшын жусан (Artemisia dracunculus), Сивенрс жусан (Artemisia sieversiana), Понтий жусан (Artemisia pontica), тамыр жусан (Artemisia terrae-albae), шсаз Yшкырлы (Tripleurospermum perforatum) [1].

Бул бершген мэлiметтер туралы, келтiрiлген сандык мэндер кврiну Yшiн пайдалы всiмдiктердiн кестесi курастырылды.

i Надоели баннеры? Вы всегда можете отключить рекламу.