Научная статья на тему 'A CHARACTERIZATION OF DERIVATIONS AND AUTOMORPHISMS ON SOME SIMPLE ALGEBRAS'

A CHARACTERIZATION OF DERIVATIONS AND AUTOMORPHISMS ON SOME SIMPLE ALGEBRAS Текст научной статьи по специальности «Физика»

CC BY
20
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Ural Mathematical Journal
Scopus
ВАК
Область наук
Ключевые слова
SIMPLE ALGEBRA / DERIVATION / LOCAL DERIVATION / 2-LOCAL DERIVATION / AUTOMORPHISM / LOCAL AUTOMORPHISM / 2-LOCAL AUTOMORPHISM / BASIS OF IDENTITIES

Аннотация научной статьи по физике, автор научной работы — Arzikulov Farhodjon, Urinboyev Furkat, Ergasheva Shahlo

In the present paper, we study simple algebras, which do not belong to the well-known classes of algebras (associative algebras, alternative algebras, Lie algebras, Jordan algebras, etc.). The simple finite-dimensional algebras over a field of characteristic 0 without finite basis of identities, constructed by Kislitsin, are such algebras. In the present paper, we consider two such algebras: the simple seven-dimensional anticommutative algebra and the seven-dimensional central simple commutative algebra . We prove that every local derivation of these algebras and is a derivation, and every 2-local derivation of these algebras and is also a derivation. We also prove that every local automorphism of these algebras and is an automorphism, and every 2-local automorphism of these algebras and is also an automorphism.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «A CHARACTERIZATION OF DERIVATIONS AND AUTOMORPHISMS ON SOME SIMPLE ALGEBRAS»

URAL MATHEMATICAL JOURNAL, Vol. 8, No. 2, 2022, pp. 46-58

DOI: 10.15826/umj.2022.2.004

A CHARACTERIZATION OF DERIVATIONS AND AUTOMORPHISMS ON SOME SIMPLE ALGEBRAS

Farhodjon Arzikulov

V.I. Romanovskiy Institute of Mathematics, Universitet street 9, Tashkent, 100174, Uzbekistan [email protected]

Furkat Urinboyev

Namangan State University, Uychi street 316, Namangan, 716019, Uzbekistan [email protected]

Shahlo Ergasheva

Kokand State Pedagogical Institute, Turon street 23, Kokand, 150700, Uzbekistan [email protected]

Abstract: In the present paper, we study simple algebras, which do not belong to the well-known classes of algebras (associative algebras, alternative algebras, Lie algebras, Jordan algebras, etc.). The simple finite-dimensional algebras over a field of characteristic 0 without finite basis of identities, constructed by Kislitsin, are such algebras. In the present paper, we consider two such algebras: the simple seven-dimensional anticom-mutative algebra D and the seven-dimensional central simple commutative algebra C. We prove that every local derivation of these algebras D and C is a derivation, and every 2-local derivation of these algebras D and C is also a derivation. We also prove that every local automorphism of these algebras D and C is an automorphism, and every 2-local automorphism of these algebras D and C is also an automorphism.

Keywords: Simple algebra, Derivation, Local derivation, 2-Local derivation, Automorphism, Local automorphism, 2-Local automorphism, Basis of identities.

1. Introduction

In the present paper, we study local and 2-local derivations and automorphisms of simple finite-dimensional algebras without finite basis of identities, constructed by Kislitsin in [19] and [20]. Kadison in [12] introduced and investigated a notion of local derivations. He proved that each continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a derivation. Semrl introduced a similar notion of 2-local derivations. He proved that any 2-local derivation of the algebra B(H) of all bounded linear operators on the infinite-dimensional separable Hilbert space H is a derivation [24]. After, numerous new results related to the description of local and 2-local derivations of associative algebras have appeared. For example, papers [1, 3, 4, 15, 16, 22] are devoted to local and 2-local derivations of associative algebras.

The study of local and 2-local derivations of nonassociative algebras was initiated in papers [5, 6] of Ayupov and Kudaybergenov (for the case of Lie algebras). They proved that each local and 2-local derivation on a semisimple finite-dimensional Lie algebra are derivations. In [8], examples of 2-local derivations on nilpotent Lie algebras that are not derivations are given. After the cited

works, the study of local and 2-local derivations was continued for Leibniz algebras [7] and Jordan algebras [2]. Local and 2-local automorphisms were also studied in many cases. For example, local and 2-local automorphisms on Lie algebras have been studied in [5, 10].

The variety of Malcev algebras is a generalization of the variety of Lie algebras [23]. It is closely related to other classes of nonassociative structures: it is a proper subvariety of binary Lie algebras, and, under the multiplication ab — ba, an alternative algebra is a Malcev algebra. Moreover, it is connected with various classes of algebraic systems such as Moufang loops, Poisson-Malcev algebras, etc. The study of generalizations of derivations of simple Malcev algebras was initiated by Filippov in [11] and continued in some papers of Kaygorodov and Popov [13, 14].

Now, a linear operator V on A is called a local automorphism if, for every x € A, there exists an automorphism <x of A, depending on x, such that V(x) = <x(x). The concept of local automorphism was introduced by Larson and Sourour [21] in 1990. They proved that invertible local automorphisms of the algebra of all bounded linear operators on an infinite-dimensional Banach space X are automorphisms.

A similar notion, which characterizes non-linear generalizations of automorphisms, was introduced by Semrl in [24] as 2-local automorphisms. Namely, a map A : A — A (not necessarily linear) is called a 2-local automorphism if, for every x, y € A, there exists an automorphism <x,y : A — A such that A(x) = <x,y(x) and A(y) = <x,y(y). After the work of Semrl, it appeared numerous new results related to the description of local and 2-local automorphisms of algebras (see, for example, [5, 7, 9, 10, 16]).

In the present paper, we continue the study of derivations and automorphisms of simple algebras. We study derivations and automorphisms of simple algebras, which do not belong to well-known classes of algebras (commutative, associative, alternative, Lie, Jordan, etc.). The simple finite-dimensional algebras without finite basis of identities, constructed by Kislitsin are such algebras. Namely, we prove that any local derivation (automorphism) of the simple finite-dimensional algebras without finite basis of identities, constructed by Kislitsin in [19] and [20], is a derivation (an automorphism, respectively), and every 2-local derivation (automorphism) of these algebras is also a derivation (an automorphism, respectively). Note that central simple finite-dimensional algebras which has no finite basis of identities were considered in the works [17] and [18] of Isaev and Kislitsin.

2. A simple finite-dimensional algebra without finite basis of identities

Let D = (e, vi, v2, en, ei2, e22,p)F be an algebra over a field F of characteristic 0 whose nonzero products of basis elements from

{e,vi,v2 ,eii,ei2 ,e22,p} (2.1)

are defined by the rules

vieij = — eij vi = vj, v2p = —pv2 = e, v^e = —evi = vi, eij e = —eeij = eij, pe = —ep = p.

Then D is a simple anticommutative algebra without finite basis of identities [20]. Let a be an element in D. Then we can write

a = aie + a2vi + a3v2 + a4eii + a5ei2 + a6e22 + azp for some elements ai, a2, a3, a4, a5, a6, and a7 in F. Throughout the paper, let

a = (ai, a2, a3, a4, a5, a6, a7 )T.

Conversely, if v = (a1, 07)T is a column vector with ai,02,03,04,05, a6, and 07 in F,

then, throughout the paper, we will denote by V the element

i.e.,

0ie + 02Vi + 03V2 + 04611 + 05612 + 06e22 + 07^;

V = 01e + 02V1 + 03V2 + 04611 + 05612 + 06622 + 07^. Let A be an algebra. A linear map D: A ^ A is called a derivation if

D(xy) = D(x)y + xD(y)

for any two elements x, y € A.

Our principal tool for the description of local and 2-local derivations of D is the following proposition.

Proposition 1. A linear map D: D ^ D is a derivation if and only if the matrix of D in the standard basis (2.1) has the following form:

/ 0 0 0 a2,2 00 00 00 00 00

0 0

0 0

0 0

«2,2 + «5,5 0 0

0 0 0

00

0 05,5 00

0 0 0 0 0 0

\

0 0 0 («2,2 + 05,5)/

Here the action of D corresponds to multiplying the matrix by a column on the right.

Proof. The proof is carried out by checking the derivation property on the algebra D. Let A = (ai,j)Jj=i be the matrix of the derivation D. Then

Avie-ij = —Ae-ijVi = Avj, AV2P = —Apv2 = Ae, Avjë- = —AevJ = Avj, Aëïjë- = —Aœïj = Aëïj, Ape. = —Aëp = Ap.

On the other hand,

Hence,

Avie-ij — Avie-ij + ViAe.

i ij

ij

Avj = Avie-ij + ViAe.

ij

So,

Âvï = ÂW[e 11 + viÀën, ai , 2e + a2 ,2Vi + 03 , 2V2 + 04 , 2eii + 05 , 2ei2 + a6 , 2622 + 07, 2P = (0i,2e + 02,2Vi + 03,2^2 + 04,26!! + 05,2ei2 + 06,2622 + a7,2p)eii +vi(0i,4e + a2,4Vi + a3,4V2 + a4,4eii + a5,4ei2 + a6,4e22 + a7,4p)

0

if i = 1, j = 1, and

ai,2e + a2,2vi + a3,2v2 + a4,2eii + a5,2ei2 + a6,2e22 + a7,2P = —ai,2eii + a2,2vi + ai,4vi + a4,4 vi + a5,4v2.

This implies that

ai,2 = 0, ai,4 + a4,4 = 0, a3,2 = a5,4, a4,2 = —ai,2 = 0, a5,2 = 0, a6,2 = 0, a7,2 = 0.

In addition, if i = 1 and j = 2, then

Av2 = AvTe-12 + v\Aei2

and

ai,3e + a2,3vi + a3,3v2 + a4,3en + a5,3ei2 + a6,3e22 + a7,3p = (ai,2e + a2,2vi + a3,2 v2 + a4,2eii + a5,2ei2 + a6,2e22 + a7,2p)ei2 +vi(ai,5e + a2,5vi + a3,5v2 + a4,5en + a5,5ei2 + a6,5e22 + a7,5p) = —ai,2ei2 + a2,2v2 + ai,5vi + a4,5vi + a5,5v2.

This implies that

ai,3 = 0, a2,3 = ai,5 + a4,5, a3,3 = a2,2 + a5,5, a4,3 = 0, a5,3 = —ai,2, a6,3 = 0, a7,3 = 0. Besides, if i = 2 and j = 2, then

Av2 = AT^e-22 + v2Ae^

and

ai,3e + a2,3vi + a3,3v2 + a4,3en + a5,3ei2 + a6,3e22 + a7,3p = (ai,3e + a2,3vi + a3,3 v2 + a4,3en + a5,3ei2 + a6,3e22 + a7,3p)e22 +v2(ai,6e + a2,6vi + a3,6v2 + a4,6en + a5,6ei2 + a6,6e22 + a7,6p) = —ai,3e22 + a3,3v2 + ai,6v2 + a6,6v2 + a7,6e.

This implies that

ai,3 = a7,6 = 0, a2,3 = 0, ai,6 + a6,6 = 0, a4,3 = 0, a5,3 = 0, a6,3 = —ai,3 = 0, a7,3 = 0.

Similarly, we have

a3,3 = —a7,7, a2,i = 0, ai,7 = 0, a6,7 = 0, a4,i = 0, a5,i = 0, a6,i = 0,

«1,2 = 0, «4,1 = 0, «5,1 = 0, «1,3 = 0, «7,1 = 0, «6,1 = 0,

«1,4 = 0, «2,1 = 0, «1,1 = 0, «1,5 = 0, «1,6 = 0, «3,1 = 0, «1,7 = 0,

«6,2 = 0, «7,2 = 0, «4,3 = 0, «3,6 = 0, «3,7 = 0, «3,5 = 0, «2,7 = 0,

«3,4 = 0, «1,2 = 0, «3,2 = 0, «4,7 = 0, «5,7 = 0, «2,6 = 0, «3,4 = 0, «2,4 = 0,

«2,5 = 0, «1,2 = 0, «5,6 = 0, «4,6 = 0, «1,3 = 0, «2,3 = 0, «6,5 = 0, «7,5 = 0,

a6,4 = 0, a7,4 = 0.

As a result, we get the matrix from Proposition 1. The proof is complete. □

Let A be an algebra. A linear map V: A — A is called a local derivation if, for any element x € A, there exists a derivation D: A — A such that V(x) = D(x).

Theorem 1. Each local derivation on the simple algebra D is a derivation.

Proof. Let V be a local derivation on D, and let A = (a^j)7j=1 be the matrix of V. Then

V(vi) = a^vi = a2,2Vi, V(v2) = (a2f2 + a525)"2 = a3,3"2, V(ei,2) = aS]s2 ei,2 = as,sei,2, V(p) = -(a|2 + ap,5)p = az,7P,

and the remaining components of the matrix A are equal to zero. At the same time,

V(vi + V2 + ei,2 + p) = V(vi) + V(v2) + V(ei,2) + V(p) (2.2)

and

V7/ I, , \ vi+V2+ei,2+P I i vi +V2+ei,2+P I vi+v2+6i,2+P\

V(vi + V2 + ei,2 + p) = a22 ' vi + (a22 ' + a5,5 ' )v2

I vi+V2+ei,2+P / vi+v2+6i,2+P , vi+v2+6i,2+P\

+a5,5 ' ei,2 - (a2,2 ' + «5,5 ' )P-

By 2.2, we have

Hence,

vi+V2 +ei,2+p I / vi+V2+ei,2+P I vi+v2+6i,2+P\ a2,2 ' vi + (a2,2 ' + a5,5 ' ) v2

vi +v2+ei,2+p /Vi +V2+ei,2 +P , vi +V2 +6i,2+P\

+a5,5 ei,2 - (a2,2 + a5,5 )p

= aVi2Vi + № + «525)v2 + 4!52ei,2 - (ap,2 + a5,5)P"

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

avi+v2+ei,2+p = m «vi +V2+ei,2+P + avi+v2+6i,2+P = av2 + av2

«2,2 = «2,2, «2,2 + «5,5 = «2,2 + «5,5,

avi+v2+ei,2+p = _ei,2 avi+v2+6i,2+P , avi+v2+6i,2+P = ap , p

«5,5 = «5,5 , «2,2 + «5,5 = «2,2 + a5,5"

This implies that

+ «v2 = «vi + a6i,2 _P + «P = «vi + a6i,2 *2,2 + «5,5 = «2,2 + «5,5 , «2,2 + «5,5 = «2,2 + «5,5

and

A =

j 0 0 0 0 0 0 0 \

0 «2,2 0 0 0 0 0

0 0 .11 , „ei,2 «2,2 + «5,5 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 a61,2 «5,5 0 0

0 0 0 0 0 0 0

V 0 0 0 0 0 0 -«2 + 4i52 ) /

Hence, by Proposition 1, V is a derivation. This completes the proof.

We give another characterization of derivations on the algebra D in the following theorem. Let A be an algebra. A (not necessary linear) map A : A ^ A is called a 2-local derivation if, for all elements x,y € A, there exists a derivation : A ^ A such that A(x) = (x) and

A(y) = (y).

Theorem 2. Each 2-local derivation on the simple algebra D is a derivation.

Proof. Suppose that A is a 2-local derivation on D and, for elements 0, b € D, Da,b is a derivation on D such that Da,b(0) = A(0) and Da,b(b) = A(b). Let Aa,b = (0^)7.,=;! be the matrix of Da,5.

Let

0 = A16 + A2V1 + A3V2 + A461,1 + A561,2 + A662,2 + A7P be an arbitrary element from D. For every v € D, there exists a derivation D2,a such that

Then from

it follows that

Hence,

A(v) = Dv>0(u), A(a) = Dv>0(a). (vi) = Dv1,o(vi), v € D,

a2,S! V1 = a2,S! v1-

vi,v _ vi,o

^2,2 = a2,2 •

o —

Therefore,

A(0) = Dv1,a(0) = A2V1 + + 0515")A3V2 + 0515^561,2 - (0212" + a51;,a)A7p.

Similarly, from

D22,2 (V2) = D^2,a(V2), V € D,

it follows that

A(0) = Dv2,a(0) = 022^aA2V1 + + 0525v)A3V2 + 0525^561,2 - (0222" + 0525")A7P. Similarly, we have

A(0) = Dei,2,«(0) = 02l22,aA2V1 + (02l22,a + 05152,")A3V2 + 05l52,vA5e1,2 - (02l22,a + 05152,")A7P, A(0) = Dp,a(0) = a2,aA2Vl + + a5),a)AзV2 + 0^561,2 - (02,2 + a5,5)A7p.

Hence,

A(0) = D21 ,„(0) = D22,a(0) = D61,2,0(0) = Dp,^) = A2V1 + (0222™ + 0525™)A3V2 + 05152,zA5e1,2 - (a2,,2 + 0p,5)A7P

for any V,w,z,t € D. Note that the components in the last sum do not depend on the element 0. Therefore, the map A is linear and it is a local derivation. The linear operator A has the following matrix:

I 0 0

n vi,v 0 a2,2

A =

0 0 0 0

00

0 0

a2,2 + a5,5 0 0 0 0

0 0 0 0

0a 00

ei,2,z 5,5

0 0 0 0 0 0

0 0 0 0 0 0

\

0 0 0 -(a2,2 + ap,5) ;

From A(v2 + p) = A(v2) + A(p), we get

/ «,V2+P I a,v2+p\ +P I ,.a,v2+P\„ _ / v2,w , V2,w\ / p,t , _P,t\„

(a2,2 + a5,5 )v2 - (a2,2 + a5,5 )p = (a2,2 + a5,5 )v2 - (a2,2 + a5,5)p

Hence,

a,V2+p | a,V2+p

V2,w I V2,w _ p,t | p,t

a^ o + a^ 5 — ^2 2 + a

a2,Y " + a5,5 - "2,2 "T" "5,5 "2,2

From A(vi + V2 + ei,2) — A(vi) + A(v2) + A(ei,2), we get

5,5

(2.3)

a

2,2

vi ,v X2,2 ,

a

",vi+v2+ei,2 . a,vi+V2+ei,2

2,2

a

+ a5,5 __«,vi+v2+ei,2 5,5

— a

V2,w I V2,w a2,2 + a5,5 ,

_ei,2,z

5,5

Hence,

V2,w I V2,w _ vi,v . ei,2,z

a2,2 + a5 5 = a2 2 + a5 5

5,5

By (2.3), we also have

P,t I p,t vi ,v | '

a2 2 + a5 5 = a2 2 + a.

2 2

,P,t

vi, v

5,5

2,2

ei,2,z 5,5 .

Thus,

A =

0 0 0 0 0 0

0 vi ,v a2,2 0 0 0 0

0 0 vi,v , ei,2,z a2,2 + a5,5 0 0 0

0 0 0 0 0 0

0 0 0 0 ei,2,z a5,5 0

0 0 0 0 0 0

0 0 0 0 0 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0 0 0 0 0

0

vi ,v

0 (a2,2 + a

ei,2,z 5,5

)

Therefore, by Proposition 1, A is a derivation. This completes the proof.

Let A be an algebra. A linear bijective map $ : A ^ A is called an automorphism if $(xy) = $(x)$(y) for any two elements € A.

Our principal tool for the description of local and 2-local automorphisms of D is the following proposition.

Proposition 2. A linear map $: D ^ D is an automorphism if and only if the matrix of $ in the standard basis (2.1) has the following form :

10

0 a2,2 00

0 0 0 0

a2,2a5,5 0 0 0 1 0 0

0 0 0 0

0 a5,5 0

001 000

0 0 0 0 0 0

«2,2«5,5 /

where a2,2 and a5,5 are nonzero elements from F. Here the action of $ corresponds to multiplying the matrix by a column on the right.

i

Proof. Let B = (bij)7j=i be the matrix of the automorphism Then there exists a derivation D such that

B = eA,

where A is the matrix of D. It is known that

A2 A3

eA = E + A + ^r + ^r +

2! 3!

where E is the unit matrix. Hence,

A2 A3

B = E + A + — + — + 2! 3!

By (2.4) and Proposition 1, B is equal to

( 1 0 o YT * 0 0

OO "'2,2

i=o IT

0

0 0 0

0 0

ECO (02,2+05,5)'

i=0 i\ 0

0 0 0

0 0 0 1

0 0

0 0 0 0

^OO "5,5 =0 0

0

0 0 0 0

n V00 O

u ¿^¿=0 ü u

0 0 0 0

0 0

(2.4)

n Y^OO (-l)'(02,2+05,5)' /

u 0 i\ /

1 0 0 0 0 0 0 \

0 e«2,2 0 0 0 0 0

0 0 ea2,2+05,5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 e05,5 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 e (02,2+05,5) /

The latter matrix gives the desired form. This completes the proof.

Let A be an algebra. A linear map V : A ^ A is called a local automorphism if, for every element x € A, there exists an automorphism : A ^ A such that V(x) = 0x(x).

Theorem 3. Each local automorphism on the simple algebra D is an automorphism.

Then

Proof. Let V be a local automorphism on D, and let A = (ajj)7 j=i be the matrix of V.

V(vi) = a2x2vi = a2,2Vi, V(v2) = a222a525V2 = 03,3^2,

1

V(ei,2) = 05,5" ei,2 = 05,561,2) V(p) = ———p = a7Jp

a2,2a5,5

and the remaining components of the matrix A are equal to zero. At the same time, V(vi + "2 + ei,2 + p) = V(vi) + V("2) + V(ei,2) + V(p)

(2.5)

1

and

w/ II i \ vi+V2+ei,2+p . vi+V2+ei,2+p vi+V2 +6i,2+p .

V(vi + V2 + ei,2 + p) — a22 vi + a22 , a5 5 , V2+

a

vi+V2+ei,2+p 5,5

ei,2 +

2,2 1

vi+V2+ei,2+p vi+V2+ei,2+p

p.

a

2,2

5,5

By (2.5), we have

a

vi+V2+ei,2+p 2,2

v1 + a2,2

vi+V2+ei,2 +p vi+V2+ei,2+p

a

Hence,

5,5

)v2 + a(

vi +V2 +ei,2+p 5,5

ei,2 +

1

vi+V2+ei,2+p vi +V2+ei,2+p

p

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

a

2,2

a

v1

ei,2 ,

1

afcvi + a£2a£5u2 + a5i¿-ei,2 + p p P-

a2,2a5,5

a

a

vi+V2+ei,2+p 2,2

vi +V2 +ei,2+p 5,5

=a

v1

2,2,

a

vi+v2+ei,2+p^vi +V2 +ei,2+p = av2 av2

= a2,2a5,5,

2,2

a

5,5

,ei,2 5,5,

a

vi+V2 +ei,2 +p vi+V2+ei,2+p _ p p

This implies that

and

a2 2a5 5 — a0 oa

2,2

VI ei,2

a

5,5

a2,2a5,5.

2,2a5,5

pp

a2,2 a5,5 = a 1 a

vi ei,2

2,2 a5,5

A —

1 0 0 0 0 0 0 \

0 av1 a2,2 0 0 0 0 0

0 0 a2,2a5,5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 a61,2 a5,5 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

t'l el,2 o2,2o5,5 /

Hence, by Proposition 2, V is an automorphism. This completes the proof.

5,5

A (not necessary linear) map A : A ^ A is called a 2-local automorphism if, for all elements x, y € A, there exists an automorphism : A ^ A such that A(x) — (x) and A(y) — (y).

Theorem 4. Each 2-local automorphism on the simple algebra D is an automorphism.

Proof. Suppose that A is a 2-local automorphism on D and, for elements a, b € D, $o,b is

o,b)7 .

an automorphism on D such that $o,b(a) — A(a) and $o,b(b) — A(b). Let Ao,b — (aOf)7^ be the matrix of Then, for all v, z € D, there exists an automorphism $v z such that

A(v) — $v,z (v), A(z) — $v,z (z).

Let Av,z — (aVjz)n-j=1 be the matrix of the automorphism $v,z. Let , ,

a — Aie + A2V1 + A3V2 + A4 ei,i + A5 ei,2 + A6 e2,2 + A/p be an arbitrary element from D. For every v € D, there exists an automorphism $V,o such that

A(v) — $v,o(v), A(a) — $v,o(a).

Then from

it follows that

(vi) = $vi,o(vi), v eD,

a2, 2 V1 = a2, 2 v1-

Hence,

Therefore,

42,2

A2,2

A(a) = $v1;o(a) = Aie + a2 '2v A2V1 + a2 2°a5 15oA3V2 + A4ei,i

+a51¿oA5eií2 + Aee2,2 +

v1,o v1,o a2,2 a5,5

A7P.

Similarly, from

it follows that

$V2,v(V2) = $V2,o(V2), v eD,

A(a) = $v2,o(a) = Aie + a^^vi + a^ a5fí1V A3V2 + A4ei,i

a212 a515

Similarly, we have

A(a) = 12,o(a) = +Aie + a^ ^'^vi + a.

e1,2,o e1,2,o ï2'2 a5,5

1A3V2

+A4ei 1 + ckV^Asei 2 + A6e2,2 +

e1,2,o e1,2,o X2'2 a5,5

A7P,

Hence,

A(a) = $p,o(a) = Ai e + ap^vi + a2'°ap;°A3V2 +A4ei,i + af^Asei^ + Aee2,2 H—PtV

a2,2 a5,5

A(a) = $v1,o(a) = $v2,o(a) = $e12io(a) = $p,o(a) =

Aie + av12v A2 v1 + a,

v2,w v2,w 2,2 a5,5

A3V2 + A4ei'i + a^2'2 A5ei,2 + A6e2,2 +

Pit P't

a2'2a5,5

A7 P

for any t € D. Note that the components in the last sum do not depend on the element a.

Therefore, the map A is linear and it is a local automorphism. The linear operator A has the following matrix:

A =

1 0 0 0 0 0 0 \

0 v1 ,v a2'2 0 0 0 0 0

0 0 v2,w v2,w a2,2 a5,5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 e1,2,z a5,5 0 0

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

0 0 0 0 0 1 0

0 0 0 0 0 0 1

o2,2o5,5 /

v1 ,v

v1 ,o

1

1

1

From A(v2 + p) = A(v2) + A(p), we get

2,2 5,5 V'2+ a,v2+p a,v2+pP ~ fl2,2 «5,5 + Pit Pit P-a2,2 a5,5 a2,2a5,5

Hence,

a,V2 +p a,V2 +p _ V2,w V2,w _ p,t p,t /„

a2,2 a5,5 = a2,2 a5,5 = a2,2a5,5- (2-u)

From A(vi + V2 + ei,2) = A(vi) + A(v2) + A(ei,2), we get

a,vx+v2+ei,2 _ vi,v a,vi+V2+ei,2 a,vi+V2+ei,2 _ v2,w v2,w

X2,2 = a2,2 , a2,2 a5,5 = a2,2 a5,5

Hence,

By (2.6), we also have

Thus,

a

a,vi+v2 +ei,2 5,5

=a

ei,2,z 5,5 •

V2,w V2,w _ vi,v ei,2,z

a2,2 a5,5 = a a

2,2 5,5

p,t p,t vi,v ei,2,z

f} — n i} n ^

a2,2a5,5

2,2 a5,5

A =

1 0 0 0 0 0 0

0 vi,v a2,2 0 0 0 0 0

0 0 vi,v ei,2,z a2,2 a5,5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 ei,2 ,z a5,5, 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1 V ,v e a2,2 a5

/

Therefore, by Proposition 2, A is an automorphism. This completes the proof.

5

3. A simple central commutative algebra with no finite basis of identities

Let C = (1,v1,v2,e11 ,e12, e22,p)F be an algebra over a field F of characteristic 0, where 1 is unity and nonzero products of basis elements

{1,v1 ,V2,en,e12,e22,p} (3.1)

other than 1 are defined as follows:

V eij = eij Vi = Vj, V2P = pv2 = 1.

Then the algebra C is a simple central commutative algebra with no finite basis of identities [19]. Let a be an element in C. Then we can write

a = a1e + a2V1 + a3 V2 + a4en + a5e12 + a6e22 + azp,

for some elements ai, a2, a3, a4, a5, a6, and a7 in F. Throughout the paper, let

a = (a1, a2, a3, a4, a5, a6, a7 )T.

Conversely, if v = (a1, a2, a3, a4, a5, a6, a7)T is a column vector with ai, a2, a3, a4, a5, a6, and a7 in F, then, throughout the paper, we will denote by v the element

i.e.,

aie + a2Vi + a3V2 + a4eii + a5ei2 + a6e22 + a7p,

? = aie + a2Vi + a3V2 + a4eii + a5ei2 + a6e22 + a7p.

Our principal tool for the description of local and 2-local derivations of C is the following proposition.

Proposition 3. A linear map D : C ^ C is a derivation if and only if the matrix of D in the basis (3.1) has the following form :

0 0 0 0 0 0

0 a2,2 0 0 0 0

0 0 a2,2 + a5,5 0 0 0

0 0 0 0 0 0

0 0 0 0 a5,5 0 0 0 0 0 0 0 \ 0 0 0 0 0 0 -(a2,2 + a5,5) )

0 0 0 0 0 0

\

Here the action of D corresponds to multiplying the matrix by a column on the right. Proof. The proof of this proposition is similar to the proof of Proposition 1.

Theorem 5. Each local (2-local) derivation on the simple algebra C is a derivation. Proof. The proof of this theorem is similar to the proofs of Theorems 1 and 2. □

Proposition 4. A linear map $: C — C is an automorphism if and only if the matrix of $ in the standard basis (3.1) has the following form:

/ 1 0 0 0 0 0 0 \

0 a2,2 0 0 0 0 0

0 0 a2'2a5,5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 a5,5 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

V 12,215,5 /

where a2,2 and a5,5 are nonzero elements from F. Here the action of $ corresponds to multiplying the matrix by a column on the right.

Theorem 6. Each local (2-local) automorphism on the simple algebra C is an automorphism.

Proof. The proof of this theorem is similar to the proofs of Theorems 3 and 4. □

REFERENCES

1. Ayupov Sh., Arzikulov F. 2-Local derivations on semi-finite von Neumann algebras. Glasg. Math. J., 2014. Vol. 56, No. 1. P. 9-12. DOI: 10.1017/S0017089512000870

2. Ayupov Sh., Arzikulov F. 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra Appl., 2017. Vol. 522. P. 28-50. DOI: 10.1016/j.laa.2017.02.012

3. Ayupov Sh., Kudaybergenov K. 2-Local derivations and automorphisms on B(H). J. Math. Anal. Appl., 2012. Vol. 395, No. 1. P. 15-18. DOI: 10.1016/j.jmaa.2012.04.064

4. Ayupov Sh., Kudaybergenov K. 2-Local derivations on von Neumann algebras. Positivity, 2015. Vol. 19. P. 445-455. DOI: 10.1007/s11117-014-0307-3

5. Ayupov Sh., Kudaybergenov K. 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra Appl., 2016. Vol. 507. P. 121-131. DOI: 10.1016/j.laa.2016.05.042

6. Ayupov Sh., Kudaybergenov K. Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2016. Vol. 493. P. 381—398. DOI: 10.1016/j.laa.2015.11.034

7. Ayupov Sh., Kudaybergenov K., Omirov B. Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bull. Malays. Math. Sci. Soc, 2020. Vol. 43. P. 2199—2234. DOI: 10.1007/s40840-019-00799-5

8. Ayupov Sh., Kudaybergenov K., Rakhimov I. 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl., 2015. Vol. 474. P. 1-11. DOI: 10.1016/j.laa.2015.01.016

9. Chen Z., Wang D. 2-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra, Appl., 2015. Vol. 486. P. 335-344. DOI: 10.1016/j.laa.2015.08.025

10. Costantini M. Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra Appl., 2019. Vol. 562. P. 123-134. DOI: 10.1016/j.laa.2018.10.009

11. Filippov V. T. ¿-derivations of prime alternative and Mal'tsev algebras. Algebra Logic, 2000. Vol. 39. P. 354-358. DOI: 10.1007/BF02681620

12. Kadison R. V. Local derivations. J. Algebra, 1990. Vol. 130, No. 2. P. 494-509. DOI: 10.1016/0021-8693(90)90095-6

13. Kalgorodov I. On (n + 1)-ary derivations of simple n-ary Mal'tsev algebras. St. Petersburg Math. J., 2014. Vol. 25. P. 575-585. DOI: 10.1090/S1061-0022-2014-01307-6

14. Kaygorodov I., Popov Yu. A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations. J. Algebra, 2016. Vol. 456. P. 323-347. DOI: 10.1016/j.jalgebra.2016.02.016

15. Khrypchenko M. Local derivations of finitary incidence algebras. Acta Math. Hungar., 2018. Vol. 154. P. 48-55. DOI: 10.1007/s10474-017-0758-7

16. Kim S.O., Kim J. S. Local automorphisms and derivations on Mn. Proc. Amer. Math. Soc., 2004. Vol. 132, No. 5. P. 1389-1392.

17. Isaev I. M., Kislitsin A. V. An example of a simple finite-dimensional algebra with no finite basis of identities. Dokl. Math., 2012. Vol. 86, No. 3. P. 774-775. DOI: 10.1134/S1064562412060154

18. Isaev I. M., Kislitsin A.V. Example of simple finite dimensional algebra with no finite basis of its identities. Comm. Algebra, 2013. Vol. 41, No. 12. P 4593-4601. DOI: 10.1080/00927872.2012.706348

19. Kislitsin A. V. An example of a central simple commutative finite-dimensional algebra with an infinite basis of identities. Algebra Logic, 2015. Vol 54. P. 204-210. DOI: 10.1007/s10469-015-9341-x

20. Kislitsin A. V. Simple finite-dimensional algebras without finite basis of identities. Sib. Math. J., 2017. Vol. 58. P. 461-466. DOI: 10.1134/S0037446617030090

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

21. Larson D. R., Sourour A. R. Local derivations and local automorphisms of ). In: Proc. Sympos. Pure Math., Providence, Rhode Island Part 2, 1990. Vol. 51. P. 187-194. URL: http://hdl.handle.net/1828/2373

22. Lin Y.-F., Wong T.-L. A note on 2-local maps. Proc. Edinb. Math. Soc. (2), 2006. Vol. 49, No. 3. P. 701-708. DOI: 10.1017/S0013091504001142

23. Mal'tsev A.I. Analytic loops. Mat. Sb. (N.S.), 1955. Vol. 36(78), No. 3. P 569-576. (in Russian)

24. Semrl P. Local automorphisms and derivations on B(H). Proc. Amer. Math. Soc., 1997. Vol. 125. P. 2677-2680. DOI: 10.1090/S0002-9939-97-04073-2

i Надоели баннеры? Вы всегда можете отключить рекламу.