«ШуШ(шшим-Ши©ма1> #3(и&2)), 2023 / TECHNICAL science
33
правок, статистика, фотография. В этом же модуле задаются права библиотечных работников. АБИС Koha может взаимодействовать с LDAP-каталогом посетителей. Среди других возможностей АБИС Koha является неплохой инструмент для создания штрих-кодов. В настоящее время Koha полностью обеспечивает основные функции АБИС локальной библиотеки и может служить в дальнейшем как инструмент для исследований и как возможный материал для обучения.
Заключение: ^пользование RFID-систем для автоматизации работы библиотек активно развивается во всем мире и позволяет эффективно обеспечивать поддержку всех процессов её работы. Маркировка библиотечного фонда RFID-метками и применение специальных считывателей позволяет контролировать процесс оборота книг внутри здания библиотеки, быстро находить нужный экземпляр среди других. Использование специальных станций самообслуживания и электронных читательских билетов позволяет читателям самостоятельно сдавать и получать книги, упрощает работу библиотекарей и исключает ошибки в процессе приема/выдачи книг. Использование RFID-ворот предотвращает попытки несанкционированного
выноса книг из библиотеки и выполняет антикраж-ную функцию.Вот почему необходим переход к системе ЯРГОвсех библиотек в кротчайшие сроки.
Список использованной литературы
1. А.А. Городнова Электронные библиотеки, электронные каталоги и базы данных Учебное пособие. Нижний Новгород. 2009
2. Агандеев, Е.А. Электронный каталог наукоемкой продукции с доступом через Интернет / Е.А. Агандеев [и др.] // Технологии Интернет - на службу обществу. (Актуальные проблемы использования и развития Интернет/Интранет технологий): сб. ст. по материалам Всерос. науч.-практ. конф. - Саратов, 2006
3. Акеройд Дж.Управление развитием электронных библиотек//Науч. и технич. б-ки.-2001.-№2
4. Байтингер, Г.А. Этапы создания электронного каталога /Г.А. Байтингер, О.А. Дубовицкая, Н.О. Ильиных // Науч. и техн. б-ки. - 2005. - № 12.
5. Н.Л. Корчагина Создание и продвижение электронных библиографических пособий консультация. Ярославль, 2020
6. Берестова Т.Ф. Библиотеки в преодолении информационных барьеров //Библиотековедение, 2005
UDC 621.313.322
Khvalin D.I.,
candidate of sciences (engineering), scientific secretary Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine
Dovydkov S.A. head of department
Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine DOI: 10.24412/2520-6990-2023-3162-33-37 A BRIEF OVERVIEW FOR MAIN STAGES OF TECHNOLOGICAL PROGRESS IN TURBOGENERATOR œNSTRUCTION
Abstract.
The analysis for stored domestic experience of design and operation a large power unit turbogenerators is given. The review and analysis for various constructive cooling systems are given, also defined expedient and permissible borders of their implementation with consideration reliability and economic efficiency for different capacities turbogenerators. It is shown that modern level of technology, stored experience of operation and researches a power turbogenerators, the use more improved materials and cooling systems allows building highpower generators with air or air-water cooling, and also with full water cooling.
Keywords: powerful turbogenerator, cooling system, reliability, economic efficiency.
The main tendency of development the power engineering and turbogenerator construction always consisted in constant increase the capacity unit of electric power station turbo-aggregate, since it reduced the specific cost of both the turbo-aggregate production and
the construction and installation works, decreases the number of operating personnel and the materials expense per unit of installed power, and also increased efficiency [1, 2] (Fig. 1, 2).
Fig. 1 Rise dynamics of power unit by years
roub kcal
kW kW- hour
100 _ cost installed kW
2,5 . V
50 . 2,0 . specific heat expense \ per produced \ kW-year
1 1
0 200 400 MW
Fig. 2 Improvement of electric power station economic indices with the increase of turbine power
If express the lull power of a turbogenerator by the known formula (in kilovolt-amperes) [2]
P = \\\D2xlxnASBky\ 10~2,
where Di is the diameter of stator boring, m; li is the active length of stator, m; n is the nominal frequency of rotation, rpm; ASi is the linear load of stator, A/cm; Bg is the magnetic flux density (of first harmonic) in the air gap, T; kyi is the coefficient of stator winding step reduction, it can be shown that at the same frequency of rotation n and almost invariable (depending on the properties of electrotechnical steel) magnetic flux density Bg an rise of a turbogenerator power can occur by increasing the linear load ASi and the stator
sizes (A, li). The increase of sizes Di and li are limited by the diameter of rotor D2 according to the metallurgy requirements (D2 = 1,2-1,3 m), that limits, respectively, the length of rotor L2, which in accordance with the vibration resistance conditions must be within L2 = (3-6,5)D2, as well as railway dimensions (transport conditions). Thus, the power increase is achieved mainly by rise the linear load ASi, that is, in limited stator sizes -by increasing the current density that is only possible with the simultaneous cooling intensification.
Air, hydrogen, water (distilled), transformer oil were practically used as the cooling medium for a turbogenerators. Comparison of their properties with respect to air is given in Table 1 [1, 3].
«coyyomum-joutmal» #3î162), 2023 / TECHNICAL SCIENCE
35
Table 1
Cooling medium properties with res
)ect to air, c.u.
The main characteristics Hydrogen at the excess pressure, MPa Water (distillate) Transformer oil
0,003 0,2
Density 0,0696 0,21 1000 848
Volumetric heat capacity 0,996 3,0 3500 1400
Thermal conductivity 6,69 7,1 23 5,3
Expenditure - 1,0 0,01 0,01
Heat diversion 1,5 3,0 50 21
The transition from the air use to the hydrogen use in a turbogenerators construction with power above 2550 MW began at the end 1930 year, and in the USSR countries - at the end 1940 year. This allowed increasing a turbogenerators power unit up to 200 MW, reducing the overall dimensions of a turbogenerators 25-50 MW and increasing the efficiency (Table 2) [i].
Table 2
Efficiency dependence on the cooling medium, %
Cooling medium of turbogenerator Power of turbogenerator, MW
25 50 100
Air 97,3 97,7 98,0
Hydrogen 98,2 98,6 99,0
Consider the stages of cooling systems development in turbogenerators construction on the example of their designs developed and produced by plants «El-ektrosyla» (Leningrad), «Elektrovazhmash» (Kharkiv), «Sybelektrotyazhmash» (Novo sibirsk).
A turbogenerators cooling intensification was initially due to the increase of hydrogen excess pressure in the housing from 0,03 to 1,0-2,0 kGs/cm2 with maintaining the indirect (external) gas cooling of the stator and rotor windings (50's years, series TV and TV2, power 25-150 MW - «Elektrosyla», series TGV and TVS, 25 and 30 MW - «Elektrovazhmash»); then due
to the application of direct (internal) gas cooling of the winding copper, first of all, the rotor (50-60's years, series TVF, power 60, 100 and 200 MW - «Elektrosyla» and «Sybelektrotyazhmash»), and then the stator (series TGV, power 200 and 300 MW - plant «El-ektrovazhmash»).
The efficiency of direct cooling application was greatly enhanced by a further increase of hydrogen pressure. It can be seen from Fig. 3, the possibility of rotor losses decrease when hydrogen cooling has sharply increased with increasing hydrogen pressure, especially with the direct cooling of the copper winding [4].
Qh / Q1
Fig. 3 Hydrogen pressure influence Ph and cooling type on the ratio of rotor maximum losses, that can be decreased with hydrogen cooling Qh, to the corresponding losses with air cooling Q1 (at atmospheric pressure)
If the transition to hydrogen cooling of a turbogenerators provided power up to 150-200 MW, then a new way of cooling - direct windings cooling - together
with the hydrogen pressure up to 5 kGs/cm2 made it possible to build a generator of power 1000-1200 MW
A number of firms were taken direct liquid cooling with distilled water or oil flows in hollow copper conductors of the stator winding (50-60's years) [6]. The high efficiency of direct liquid cooling of the stator bar is illustrated in Table 3 [7].
Table 3
The maximum relative permissible current load on the stator-wmding bar with different cooling
Hydrogen pressure in a turbogenerator, kGs/cm2 Indirect cooling Bar direct cooling
Gas Liquid
Water Oil
a b a b
0 1,0 1,2 3,5 4,9 1,4 1,9
0,6 1,03 1,4 - - - -
1,2 1,07 1,6 - - - -
1,8 1,13 1,8 - - - -
with direct hydrogen cooling of the rotor [5]. The calculations showed the possibility application of direct hydrogen cooling of the rotor for a turbogenerator with power 1600 MW.
Note:
1) all values represent the ratio of the maximum current load with bar indirect hydrogen cooling at pressure close to atmospheric;
2) the fluid pressure for liquid cooling is 1,2 kGs/cm2 (a) and 3,7 kGs/cm2 (b);
3) the maximum permissible temperature for bars gas cooled is 130 °C, for bars liquid cooled - 60 °C.
Direct water cooling of the stator winding was taken by plant «Elektrosyla» for a series bipolar generators TVV (power 165, 200 and 220, 320, 500, 800, 1000, 1200 MW) and for a quadripolar turbogenerator 1000 MW; plant «Elektrovazhmash» - for bipolar generators of power 200 MW, for bipolar and quadripolar turbogenerators of power 500 MW (TGV-200 and TGV-500, respectively).
Direct cooling of the winding and stator core with insulating oil was applied by plant «Sybelektro-tyazhmash» for a generators type TVM-300 (power 300 MW, without hydrogen).
Due to technical difficulties the direct water cooling of rotor was later applied than stators (60-70's years) and used by plant «Sybelektrotyazhmash» for a turbogenerators type TVM-300, as well as by plant «Elektrovazhmash» for TGV-500-4. Plant «Elektrosyla» has also developed and applied in industry an essentially new turbogenerators with direct water cooling of
MVA/ii i3 h c 5
......X...... ......A...... < )
□oc o > ZD O
□ □
MW
0 200 400 600 800 1000 1200
O TVS. TV □ TVF A TGV
O TVV X TVM -I- T3V Fig. 4 Increase of a turbogenerator use coefficient with rise ofpower unit
the rotor windings, the stator windings and stator core - a series T3V (so-called «three waters») of power 60 and 800 MW.
Technological progress of turbogenerators cooling systems development and cooling intensification of active parts caused a significant increase the material use coefficient [7, 8] (Fig. 4, Table 4), that is rise a generator production efficiency, despite construction complication due to the need of auxiliary systems provides functioning of cooling systems: gas system, oil supply system of shaft compression, water cooling system of the windings.
The further growth of a turbogenerators power unit was inhibiting by the energy systems development.
So, today in the post-Soviet countries at the electric power station are existing high-use turbogenerators with various constructions, maximum power and cooling type (Table 5).
«coyyomum-jmtmal» #3îi62), mm / technical science
37
Table 5
Maximum power of working turbogenerators in the post-Soviet countries
Table 4
A turbogenerators cooling systems of various types
Sings (Fig.4) Turbogenerator type Stator winding cooling Rotor cooling In a housing of turbogenerator
◊ TVS-30 Indirect, Indirect, Hydrogen
TV-60-2 hydrogen hydrogen
TVF-60-2 Indirect, hydrogen Direct, hydrogen
□ TVF-100-2 TVF -120-2 Hydrogen
A TGV-200 TGV-300 Direct, hydrogen Direct, hydrogen Hydrogen
TGV-500 Direct, water Direct, water Hydrogen
TVV-165-2
TVV-200-2
TVV-220-2
o TVV-320-2 TVV-500-2 TVV-800-2 TVV-1000-2 Direct, water Direct, hydrogen Hydrogen
m TVM-300 Direct, oil Direct, water Air
+ T3V-800-2 Direct, water Direct, water Air
Series, type Power, MW Frequency of rotation, rpm Cooling medium
Stator Rotor
winding core
Thermoelectric power stations
TVV-1200-2U3 1200 3000 Water Hydrogen Hydrogen
T3V-800-2 800 3000 Water Water Water
TGV-500-2 500 3000 Water Hydrogen Water
TVM-300 500 3000 Oil Oil Water
Nuclear power stations
TVV-1000-2U3 1000 3000 Water Hydrogen Hydrogen
TVV-1000-4U3 1000 1500 Water Hydrogen Hydrogen
TGV-500-4 500 1500 Water Hydrogen Water
Conclusions
Modern level of technology, stored experience of operation and researches a power turbogenerators, the use more improved materials (stator and rotor winding insulation, electrotechnical steel, etc.) and cooling systems allows building high-power generators with air or air-water cooling, and also with full water cooling, that provide fire and explosion protection of electric power station. For all this it is necessary take into account the maximum simplicity principle for construction and maintenance, the minimum number of auxiliary systems and the maximum reliability.
Literature
1. Titov V.V., Khutoretskyi G.M., Zagorodnaya G.A., Varatian G.P. Turbogenerators. Calculation and construction. Leningrad: Energiia, 1967. 895 p. (Rus.)
2. Khvalin D.I., Dovydkov S.A. Influence of constructive factors on the temperature distribution in end zone of powerful electrical machine. East European Scientific Journal. 2022. Vol. 1. № 2(78). P. 54-58.
3. Vygovskyi O.V., Hvalin D.I., Mystetskyi V.A. Influence of moisture and hydrogen purity on the reliability of powerful electrical machines. Problemi
bezpeki atomnikh elektrostantsyi i Chornobilya. 2017. № 29. C. 14-21. (Ukr.)
4. Kuchynskyi K.A., Kramarskyi V.A., Hvalin
D.I., Mystetskyi V.A. Thermomechanical parameters of stator winding insulation of a turbogenerator with controllable cooling. East European Scientific Journal. 2020. Vol. 3. № 1(52). P. 74-77.
5. Kensytskyi O.G., Hvalin D.I. Cooling system optimization and load capacity increase of Dniester HAPP. Hidroenergetyka Ukrainy. 2014. № 1. P. 1-4. (Ukr.)
6. Kensytskyi O.G., Hvalin D.I. A heating of stator winding turbogenerator for failure the circulation of refrigerant. Problemi bezpeki atomnikh elektrostantsyi i Chornobilya. 2018. № 31. C. 31-35. (Ukr.)
7. Azbukhin Yu.I., Avrukh V.Yu. Modernization of turbogenerators. Moskva: Energiia, 1980. 232 p. (Rus.)
8. Khutoretskyi G.M., Tokov M.I., Tolvinskaya
E.V. Turbogenerators design. Leningrad: Ener-goatomizdat, 1987. 256 p. (Rus.)