ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Т 63 (9)_Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»_2020
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII V 63 (9) KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2020
RUSSIAN JOURNAL OF CHEMISTRY AND CHEMICAL TECHNOLOGY
DOI: 10.6060/ivkkt.20206309.6246 УДК: 547.724.2+661.77+665.939.57
ДИЦИНАМИЛОВЫЙ ЭФИР 2,5-ФУРАНДИКАРБОНОВОЙ КИСЛОТЫ И НОВЫЕ СОПОЛИМЕРЫ НА ЕГО ОСНОВЕ
В.П. Кашпарова, В.А. Клушин, И.Ю. Жукова, И.И. Кашпаров, В.Е. Андреева, Н.В. Смирнова
Вера Павловна Кашпарова *, Виктор Александрович Клушин, Вероника Евгеньевна Андреева, Нина Владимировна Смирнова
Кафедра химических технологий, Южно-Российский государственный политехнический университет (НПИ) им. М.И. Платова, ул. Просвещения, 132, Новочеркасск, Российская Федерация, 346428 E-mail: [email protected] *, [email protected], [email protected], [email protected]
Ирина Юрьевна Жукова, Иван Игоревич Кашпаров
Кафедра химических технологий нефтегазового комплекса, Донской государственный технический университет, пл. Гагарина, 1, Ростов-на-Дону, Российская Федерация, 344000 E-mail: [email protected], [email protected]
Разработан способ синтеза дицинамилового эфира 2,5-фурандикарбоновой кислоты (DCF) - нового непредельного соединения фуранового ряда, потенциального мономера для получения сополимеров с различными виниловыми соединениями и на их основе конструкционных и ионообменных материалов нового поколения. Исследованы реакции радикальной гомополимеризации DCF и его сополимеризации с различными мономерами. DCF не вступает в реакцию гомополимеризации ни в массе, ни в растворе (растворитель: толуол) и самостоятельных полимеров не образует. Однако DCF активно сополимеризуется со стиролом, метилметакрилатом, метакриловой и акриловой кислотами с образованием сетчатых полимеров с различной степенью сшивки. Определены константы сополимеризации DCF с ненасыщенными кислотами, стиролом и метилметакрилатом. Сополимеры DCF обогащены сомономерными звеньями для всех соотношений компонентов исходной реакционной смеси, являются статистическими, и сомономерные звенья в макромолекуле расположены случайным образом. Сополимеры со стиролом или метилметакрилатом имеют более высокую механическую прочность по сравнению с полистиролом и полиме-тилметакрилатом. Сополимеры, содержащие карбоксильные группы и 10-20% мас. сшивающего агента, проявляют хорошие ионно-обменные свойства по отношению к тяжелым металлам. Равновесная адсорбционная емкость сополимеров DCF с акриловой или метакриловой кислотами по отношению к ионам Cu2+ (221 и 234 мг/г) была почти в два раза выше, чем для Amberlite IRC-748 (120,0 мг/г). Материалы с содержанием сшивающего агента 2,55% мас. образуют полимерные гели с высоким водопоглощением. Максимальное набухание показали материалы, содержащие 2,5% мас. сшивающего агента (> 1400% для сополимера DCF/акриловая кислота и > 1700 для сополимера DCF/метакриловая кислота.). Эти материалы можно рекомендовать в качестве поглотителей воды.
Ключевые слова: 2,5-фурандикарбоновая кислота, сложные эфиры, сополимеры, прочность, ударная вязкость, ионно-обменные свойства
В.П. Кашпарова, В.А. Клушин, И.Ю. Жукова, И.И. Кашпаров, В.Е. Андреева, Н.В. Смирнова 2,5-FURANDICARBOXYLIC ACID DICINAMIL ETHER AND NEW COPOLYMERS ON ITS BASIS V.P. Kashparova, V.A. Klushin, I.Yu. Zhukova, I.I. Kashparov, V.E. Andreeva, N.V. Smirnova
Vera P. Kashparova *, Victor A. Klushin, Veronika E. Andreeva, Nina V. Smirnova
Department of Chemical Technologies, Platova M.I. South-Russian State Polytechnic University, Prosvescheniya st., 132, Novocherkassk, 346428, Russia
E-mail: [email protected] *, [email protected], [email protected], [email protected] Irina Yu. Zhukova, Ivan I. Kashparov
Department of Chemical Technology of the Oil and Gas Complex, Don State Technical University, Gagarina sq.,
1, Rostov-on-Don, 344000, Russia
E-mail: [email protected], [email protected]
A method for the synthesis of dicinamyl ester of 2,5-furandicarboxylic acid (DCF) a new unsaturated compound of the furan series and potential monomer for producing copolymers with various vinyl compounds and based on them a new generation of construction and ion-exchange materials has been developed. DCF does not form homopolymers as in bulk as in solution (toluene solvent). However, DCF is actively copolymerized with styrene, methyl methacrylate, meth-acrylic and acrylic acids to form cross-linked polymers with varying degrees of crosslinking. The copolymerization constants of DCF with all investigated vinyl compounds were determined. The DCF copolymers are enriched with comonomer units for all ratios of the components in the initial reaction mixture. They are statistical, and the comonomer units in the macromolecule are randomly arranged. Copolymers with styrene or methyl methacrylate have higher mechanical strength compared to polystyrene and polymethyl methacrylate. Copolymers containing carboxyl groups and 10-20 % wt. crosslinking agent exhibit good ion-exchange properties with respect to heavy metals. The equilibrium adsorption amount of Cu2+ onto ion-exchange св^polymers (221234 mg/g) was almost twice as large as that onto Amberlite IRC-748 (120.0 mg/g). Materials with a crosslinking agent content of 2.5-5% wt. form polymer gels with high water absorption. Materials containing 2.5 % wt. crosslinking agent (> 1400 % for copolymer DCF /acrylic acid and > 1700 for copolymer DCF/methacrylic acid) are showed maximum swelling. These materials can be recommended as water absorbers.
Key words: 2,5-furandicarboxylic acid, esters, copolymers, strength, resilience, ion exchange properties Для цитирования:
Кашпарова В.П., Клушин В.А., Жукова И.Ю., Кашпаров И.И., Андреева В.Е., Смирнова Н.В. Дицинамиловый эфир 2,5-фурандикарбоновой кислоты и новые сополимеры на его основе. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 9. С. 4-11 For citation:
Kashparova V.P., Klushin V.A., Zhukova I.Yu., Kashparov I.I., Andreeva V.E., Smirnova N.V. 2,5-furandicarboxylic
acid dicinamil ether and new copolymers on its basis. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. &
Chem. Tech.]. 2020. V. 63. N 9. P. 4-11
INTRODUCTION copolymerization). Thermosetting products with high
heat resistance are produced from crosslinked poly-
In recent years, polymers and copolymers mers and copolymers of allyl ethers. Other applica-
based on nitrogen and oxygen-containing vinyl and tions of these polymers are production of casting
allyl monomers have found application in various sheets, molding materials, electrical and optical devi-
fields of industry, medicine and agriculture. Due to ces with high resistance and refractory materials [5, 6].
their unique properties these materials are character- Homopolymerization of diallyl compounds
ized by high mechanical strength, thermal and chemi- often leads to the formation of low molecular weight
cal steWl^ and good insulating and adhesive proper- products and/or has a cyclic-linear nature, which leads
ties [1 2]. Polymers and copolymers of allyl com- to the production of macromolecules with alternating
pounds containing polar groups, for example carbox- cyclic and linear units, as well as cyclic structures [6,
у1, are used as ion-exchange raterta^ adsorbents and 7]. The main reason for the formation of low molecu-
water absorbers [1 3 4]. Some ally1 monomers are lar weight homopolymers is the destructive transfer of used for crosslinking or curing of polyolefins (grafted
the chain to the monomer and the cyclization reaction. The behaviour of allyl monomers in copolymerization reactions often is determined by their low reactivity compared to most vinyl monomers. In addition, most allyl monomers are derived from petroleum, for example, diallyl phthalates, diallyl adipates, diallyl ma-leates, etc [1, 8]. Currently, there is a tendency to replace non-renewable fossil raw materials for the synthesis of valuable chemical products, including monomers and polymers of various classes, with renewable bio-raw materials [9, 10]. Therefore, it is of great interest to search for new allyl monomers that are distinguished by sufficient reactivity and the possibility to be obtained from bio-renewable plant materials.
Previously, 5-hydroxymethylfurfural (HMF) was synthesized by catalytic dehydration of plant hexose-containing raw materials [11]. 2,5-furan-dicarboxylic acid (FDCA) was prepared by HMF oxidation [12]. Based on FDCA, a new allyl monomers of diallyl-5,5-oxybis-(methylene)bis[furan-2-carboxylate] (DADF) and diallylfuran-2,5-dicarboxylate (DAf) were synthesized and their radical copolymerization with butyl methacrylate was studied [13].
This article reports results on the synthesis of a new furan-based allylic monomer - dicinamyl ester of 2,5-furandicarboxylic acid (DCF). The results of the copolymerization reaction of DCF with unsaturat-ed acids (acrylic acid (AAc), methacrylic acid (MAAc)), styrene (S) and methyl methacrylate (MMA) are studied.
EXPERIMENTAL PART
2,5-Hydroxymethylfurfural and 2,5-furandicarboxylic acid were obtained from bio-renewable raw materials according to previously developed methods [11, 12]. Other Aldrich reagents were used without further purification.
Method for the synthesis of dicinamyl ether FDCA (DCF) from FDCA dichloride.
V
4
Fig. Structural formula of dicinamyl ester of 2,5-furandicarboxy-
lic acid (DCF) molecule Рис. Структурная формула молекулы дицинамилового эфира 2,5-фурандикарбоновой кислоты (DCF)
1.92 g (0.01 mol) of FDCA dichloride, 5 ml (0.06 mol) of pyridine and 8 g (0.06 mol) of cinnamic alcohol are placed in a 50 ml round bottom flask equipped with a magnetic stirrer and reflux condenser. The mixture is kept in a silicone bath at a temperature of 30-35 °С within ~ 2 h. At the end of the syn-
thesis, the reaction mixture was cooled to room temperature and diluted with cold water (100 ml) to remove pyridine. The yellowish crystals are separated by filtration and washed with ether (2^10 ml) from excess alcohol. The crystals are dried in air and re-crystallized from heptane. The obtained white needle crystals were separated on a Schott filter, washed with cold heptane (~ 3 ml) and dried in air. 3.1 g of dicinamyl ether 2,5-FDCA (DCF) (80%), melting point 88-89 °C (from heptane) was obtained.
:H NMR (300 MHz, CDCl3) 5 7.44 (d, J = 6.9 Hz, 2H), 7.40-7.25 (m, 4H), 6.77 (d, J = 15.9 Hz, 1H), 6.40 (dt, J = 15.8, 6.6 Hz, 1H), 5.02 (d, J = 6.5 Hz, 2H).
General procedure for bulk or solution ho-mopolymerization of DCF. A mixture of 5 g of DCF and 5 mg azo-bis-dinitrile isobutyric acid (AIBN) (0.1 % wt.) was prepared in a wide tube. For solution homopolymerization, 5 ml of toluene is added. The reaction mixture was purged with argon for 5 min. After that the tube was closed and heated in an oil bath at 80 °C for 10 h. Then the reaction mixture was cooled to room temperature, the contents were transferred to a flask and treated with heptane (10 ml). The mixture is placed in the refrigerator (temperature -20 °C), after 3-4 h. The precipitated crystals are filtered off. The result is the initial monomer, in almost the same amount that was taken for the reaction (3.93.95 g). The structure was confirmed by GC-MS and NMR spectroscopy.
General procedure for the synthesis of DCF copolymers with vinyl compounds. In a wide test tube, a mixture of DCF (the amount in wt. % is indicated in Tables 2-5), the corresponding vinyl monomer - un-saturated acid (MAAc, AAc) or styrene or MMA -and AIBN (0.1% wt., 5 mg) was prepared. The total weight of the monomer mixture was 5 g. The reaction mixture was purged with an inert gas (argon or helium) for 2 min, the tube was closed with a ground stopper and heated in an oil bath at 80 °C for 3-8 h (depending on the cross-linked agent content, Table 2-5). Then the mixture is cooled to room temperature, the polymer is recovered, which is a solid glassy mass.
The control samples of polystyrene (PS), polymethyl methacrylate (PMMA), polyacrylic (PAAc) and polymethacrylic (PMAAc) acids were obtained under the same conditions (the initiator is AIBN 0.05%, reaction temperature 80 °C).
The methodology for determining the composition of the copolymer and the copolymerization constants. The acid value (AV) of copolymers with MAAc or AAc was determined by titration of copol-ymers solutions in dimethyl formamide with a 0.1 M alcohol solution of KOH. Methanol or ethanol for copolymers with a high acid content and benzene for
_ ^ ^схр
1--
Avtheor
copolymers with a high content of DCF can also be used as a solvent. The vinyl monomer content (Xj, %) in the copolymers with unsaturated acids (MAAc or AAc) was calculated based on the AV, and in the co-polymers with styrene or with MMA, based on the ether value (EV) [14].
•100; Xj = -^2L-100%
Evtheor
The calculation of the copolymerization constants was carried out by the method of intersecting straight lines [15, 16].
Gas chromatography-mass spectrometry (GHMS) was carried out on an Agilent 7890A chromatograph equipped with an Agilent 5975C mass selective detector (EU, 70 eV) and an HP-5MS capillary column.
To confirm the structure of the obtained compounds, 1H and 13C NMR spectroscopy were used. 1H and 13C NMR spectra were recorded on a Bruker Avance III spectrometer with operating frequencies of 400.13 and 100.63 MHz, for 1H and 13C nuclei, respectively. Solvent signals served as an internal standard.
The swelling degree and the rate constant of the swelling of the comonomers were determined by the gravimetric method in an LSU instrument in distilled water, toluene and chloroform. Each sample was weighed before the experiment and immersed in an appropriate solvent. Volume changes were measured every 30 min. The duration of the experiment was 240 min at room temperature for each sample. The swelling degree was calculated:
a = ™JLl 0 0 % ,
m0
where AV is the volume of solvent absorbed by the polymer, p is the density of the solvent, m0 is the initial mass of the polymer sample.
Determination of the exchange capacity of the copolymers was carried out according to GOST 20255.1-89. Strength properties of the samples were determined in accordance with [17], hardness was determined according to GOST 24621-2015 (ISO 868: 2003), impact strength according to DIN EN ISO 179-2:1999.
RESULTS AND DISCUSSION
The bulk copolymerization reactions of DCF with styrene, MMA, MAAc and AAc were researched. The calculated values of the copolymerization constants show that, for all monomer ratios in the initial reaction mixture, all 4 series of new copolymers are enriched with comonomer units, in particular, the PS/DCF copolymer is enriched with styrene units, the MMA/DCF copolymer is enriched with MMA units, AAc/DCF and MAAc/DCF copolymers with AAc
and MAAc units, respectively. This is evidenced by the ratio of the copolymerization constants (ri < 1 and r2 > 1) (Table 1). In almost all cases, the product of the copolymerization constants (r1xr2) is close to 1 that indicates that the copolymers PS/DCF, PMMA/DCF, AAc/DCF and MAAc/DCF are statistical ones and the comonomer units in the macromole-cule are randomly distributed [18].
Table 1
Copolymerization constants of DCF with unsaturated
acids, styrene and MMA Таблица 1. Константы сополимеризации DCF с не-
Comonomer r1 r2 Г!хГ2
AAc 0.5 2.2 1.1
MAAc 0.55 1.7 0.94
Styrene 0.7 1.4 0.98
MMA 0.6 1.55 0.93
The yield and properties of the obtained co-polymers depending on the DCF content are presented in Tables 2-5.
In the presence of DCF, the polymerization time of styrene and MMA decreases. And the higher the comonomer content, the shorter the reaction time. So already at a monomer content of 1% wt. the polymerization time was reduced by almost 2 times. The polymerization time of 8 h instead of 18 for pure PS (Table 2) and 14 h for PMMA (Table 3) was observed. When the DCF content was reached 20% wt the copolymerization time was reduced by 5 times (only 4 and 3 h for PS/DCF and PMMA/DCF, respectively).
The PS/DCF and PMMA/DCF copolymers containing 1-2.5% wt. DCF partially retain their solubility in chlorinated hydrocarbons (chloroform, methylene chloride), similar to FDCA diallyl ether copol-ymers [13]. When the content of DCF > 2.5% wt. crosslinked copolymers are formed that result in losing their solubility in organic solvents completely and their swelling becomes limited. The swelling degree is quite large and amounts to 2400% and 2300% for PS/DCF and PMMA/DCF, respectively. With a further increasing the DCF content in the reaction mixture (20 and 30% wt.), the number of crosslinks increases, and the swelling degree decreases significantly (for PS/DCF - more than 10 times and 2-3 times for PMMA/DCF) (Tables 2, 3).
At a low DCF content (1-5% wt.), the PS/DCF and PMMA/DCF copolymers retain almost the same stiffness as the PS and PMMA control samples. As the amount of DCF increases, the degree of branching of the macromolecules increases too, the copolymer hardness decreases, and the elasticity in-
creases. So at a high content in the initial mixture (2030% by weight) DCF acts as a plasticizer to sharply decrease stiffness and glass transition temperature of the PS/DCF and PMMA/DCF copolymers (Tables 2, 3).
The obtained copolymers can be proposed to replace polydiallyl phthalate and its copolymers with styrene or MMA [1, 19, 20], which are used for manufacturing of products that require exceptional dimensional stability, ease of molding, low water absorption, and excellent optical and electrical properties.
The copolymers of DCF and unsaturated acids AAc/DCF and MAAc/DCF with a low content of a crosslinking agent of 1% wt. partially soluble in water. If DCF content > 2.5% wt. copolymers have a cross-linked structure and swell to a certain limit, but do not dissolve, therefore, can be used as water absorbers [3, 21]. With an increase in the DCF content to 10%, the number of crosslinks in the polymer increases [13], the limiting swelling decreases several
times to no more than 200%. It makes them suitable for use as ion-exchange resins [22].
The study of the ion-exchange properties of copolymers of DCF with unsaturated acids showed that the introduction of 2.5 to 10% wt. DCF does not significantly effect on the exchange capacity (EC) of these resins (Tables 4, 5). The highest exchange capacity was observed for DCF copolymers with unsaturated acids containing 2.5% comonomer (8.0 mEq/g Na+ and 278 mg/g Cu2+ for AAc/DCF copolymer). However, these materials are not suitable for ion-exchanging applications because of high swelling degree (for the AAc/DCF and DCF/MAAc a are 1400 and 1700%, respectively). Copolymers containing 10% wt. of DCF with a swelling degree of up to 250% can be recommended as ion-exchangers with EC > 220 mEq/g for Cu2+. Their exchange capacity is not inferior to industrially used ion-exchange resins (KU-2.8, EC = 1.8-2.0 mEq/g; Amberlite IRC-748, EC = 4-4.5 mEq/g) [23].
Table 2
The yield and properties of the copolymer of DCF and styrene, depending on the content of the cross linking agent
DCF content, % wt. 0 1 2.5 5 7.5 10 20 30
Polymerization time, h 18 8 8 6 6 5 4 4
Yield*, % 100 100 100 100 99 99 92 89
Stiffness hard hard hard hard hard hard elastic ** elastic **
Glass transition temperature, °C 100 105 108 114 122 130 110 93
Swelling in CHCls, % dissolves partially dissolves partially dissolves 2400 1800 1150 720 220
Shore hardness, HB 637 637 520 318 305 300 160 90
Half decomposition temperature, °C 350 360 364 367 372 375 376 377
Tensile strength, MPa 40.1 50.3 55.4 57.6 56.1 53.4 43.2 25.8
Impact strength, kJ/m2 3.0 4.6 5.1 7.9 8.0 8.3 10.5 13.2
Notes: * - the rest is a comonomer that has not reacted; ** - quickly restores shape after deformation
Примечания: *- остальное сомономер, не вступивший в реакцию; ** - быстро восстанавливает форму после деформации
Table 3
The yield and properties of the copolymer of DCF and MMA depending on the content of the cross linking agent
DCF content, % wt. 0 1 2.5 5 7.5 10 20
Polymerization time, h 14 8 8 6 6 5 3
Yield*, % 100 100 100 100 99 99 92
Stiffness hard hard hard hard hard elastic ** plastic
Glass transition temperature, °C 104 108 110 113 123 98 27
Swelling in CHCls, % dissolves slightly soluble slightly soluble 2300 2000 1300 940
Shore hardness, HB 637 637 530 316 308 220 40
Half decomposition temperature, °C 213 225 - 242 - 254 255
Tensile strength, MPa 76.0 91.2 93.6 95.4 82.6 73.9 43.7
Impact strength, kJ/m2 15.0 18.5 19.2 20.3 21.5 21.8 22.2
Notes: * - the rest is a comonomer that has not reacted; ** - quickly restores shape after deformation
Примечания: *- остальное сомономер, не вступивший в реакцию; ** - быстро восстанавливает форму после деформации
Table 4
The yield and properties of copolymers of DCF and acrylic acid depending on the content of the cross linking agent Таблица 4. Выход и свойства сополимеров DCF с акриловой кислотой в зависимости от содержания сши-_вающего агента_
DCF content, % wt. 0 1 2.5 5 7.5 10 20
Polymerization time, h 6 3 3 2 2 2 1
Yield, % 0 100 100 100 99 99 97
Stiffness hard hard hard hard hard hard hard
Glass transition temperature, °C 106 108 110 113 118 133 150
Swelling in water, % dissolves slightly soluble 1400 1100 670 220 90
EC, mEq/g Na2+ - - 8.1 7.8 7.2 7.0 6.3
EC, mg/g Cu2+ - - 278 266 254 248 234
Half decomposition temperature, °C 637 637 637 637 637 637 637
Tensile strength, MPa 351 362 370 393 413 421 423
Impact strength, kJ/m2 2.5 2.3 1.8 1.7 1.6 1.3 0.6
Table 5
Yield and properties of copolymers of DCF and methacrylic acid depending on the content of the cross linking agent Таблица 5. Выход и свойства сополимеров DCF с метакриловой кислотой в зависимости от содержания _сшивающего агента_
DCF content, % wt. 0 1 2.5 5 7.5 10 20
Polymerization time, h 6 3 3 2 2 2 1
Yield, % 0 100 100 100 99 99 98
Stiffness hard hard Hard hard hard hard fragile
Glass transition temperature, °C 227 231 233 242 258 269 273
Swelling in water, % dissolves slightly soluble 1700 1400 800 250 110
EC, mEq/g Na2+ - - 7.5 7.1 6.5 6.2 5.9
EC, mg/g Cu2+ - - 256 246 238 231 221
Half decomposition temperature, °C 637 637 637 637 637 637 637
Tensile strength, MPa 308 324 339 363 372 388 397
Impact strength, kJ/m2 2.8 2.5 1.9 1.6 1.3 0.8 0.3
CONCLUSION
The synthesis of a new furan-based monomer -dicinamyl ether of 2,5-furandicarboxylic acid (DCF) was carried out. The processes of its homopolymeri-zation and copolymerization with styrene, methyl methacrylate and unsaturated acids (acrylic, methacrylic) were studied. DCF does not form homopolymers in both bulk and solution (toluene solvent), but reacts with all studied monomers to form copolymers with varying degrees of crosslinking. The copolymerization time of binary systems decreases with increase of the DCF crosslinking agent.
The copolymerization constants of DCF with unsaturated acids, styrene and methyl methacrylate were determined. The DCF copolymers are enriched with comonomer units for all ratios of the components in the initial reaction mixture. They are statistical ones, and the comonomer units in the macromole-cule are randomly arranged.
The formation of three-dimensional polymers with all the studied compounds is confirmed by the loss of their solubility in the corresponding solvents (chloroform, carbon tetrachloride, toluene for copol-
ymers with styrene and methyl methacrylate; water for copolymers with acrylic and methacrylic acids) and the ability to limit swelling.
For copolymers with acrylic or methacrylic acid, the copolymer stiffness increases with increase in DCF cross-linking agent, and with a high DCF content (more than 20% wt.) the material becomes fragile. For copolymers of styrene or methyl methacrylate, an increase in the DCF content, on the contrary, leads to a decrease in stiffness and an increase in heat resistance. The increase in elasticity is explained by the plasticizing effect of DCF, similar to the action of diallyl phthalate.
The ion-exchange properties of copolymers containing carboxyl groups with respect to sodium and heavy metals have been studied. As ion-exchange materials, unsaturated acids copolymers with DCF 10% wt. can be used. These copolymers showed the swelling degree required for ion-exchange materials (not more than 250% wt.) at a high exchange capacity (> 6 mEq/g for Na+). These copolymers can be recommended for removing heavy metals ions from wastewater. They are good adsorbents with respect to
copper ions (221 and 234 mg/g for MAAc/DCF and AAc/DCF copolymers respectively).
This work was done using equipment of Center for Shared Scientific Equipment «Nanotechnolo
gy» of Platov South-Russian State Polytechnic University (NPI) and financially supported by the Russian Science Foundation (project 16-13-10444
ЛИТЕРАТУРА
1. Krahling L., Krey J., Jakobson G., Grolig J., Miksche
L. Allyl compounds. In: Ullmann's Editorial Advisory Board (eds) Ullmann's encyclopedia of industrial che m-istry. Wiley-VCH: Wein heim. 2000. P. 447-469. DOI: 10.1002/14356007. a01 _425.
2. Gorbunova M.N., Borisova LA. Copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride and alkyl methacrylates. Polym. Sci. Ser. B. 2016. V. 58. P. 650-658. DOI: 10.1134/S1560090416060075.
3. Борисов И.М., Рашидова С.Т., Лукша Р.С. Водопо-глощающая способность сополимера диаллилдимети-ламмоний хлорида и акриламида. Изв. вузов. Химия и хим. технология. 2015. Т. 58. Вып. 6. С. 62-65.
4. Larsen D.B., S0nderb»k-J0rgensen R., Duus J.0., Dau-gaard A.E. Investigation of curing rates of bio-based thiolene films from diallyl 2,5-furandicaboxylate. Eur. Polymer J. 2018. V. 102. P. 1-8. DOI: 10.1016/j.eurpolymj.2018.03.005.
5. Gorbunova M.N. Copolymerization of 2, 2-Diallyl-1, 1, 3, 3-tetraethylquanidinium Chloride with N-(4-Acetylphenyl) maleimide. Am. J. Polymer Sci. 2012. V. 2. N 4. P. 62-66. DOI: 10.5923/j.ajps.20120204.03.
6. Глаголев Н.Н., Зайцев С.Ю., Зайченко Н.Л., Корши-кова А.В., Максимов В.И., Оськина О.Ю., Староверова И.Н. Антистатические свойства сополимеров N,N-диметил-N, N-диаллил-аммоний хлорида и метилметак-рилата. Изв. вузов. Химия и хим. технология. 2008. Т. 51. Вып. 9. С. 59-62.
7. Rosatella A.A., Simeonov S.P., Frade R.F., Afonso C.A. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry. 2011. V. 13. N 4. P. 754-793. DOI:10.1039/C0GC00401D.
8. Gorbunova M.N., Tiunova T.G. New N-allylmaleimide-based copolymers: Synthesis and thermal properties. Polymer Sci. Ser. B. 2015. V. 57. N 4. P. 304-312. DOI: 10.1134/S 1560090415040041.
9. Gerardy R., Morodo R., Estager J., Luis P., Debecker D.P., Monbaliu J.-Ch.M. Sustaining the Transition from a petro-based to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chem. 2019. V. 377. N 1. P. 111-145. DOI: 10.1007/s41061-018-0222-3.
10. Lima C.G.S., Monteiro J.L., de Melo Lima T., Weber Paixao M., Correa A.G. Angelica Lactones: From Biomass Derived Platform Chemicals to Value Added Products. Chem. Sus. Chem. 2018. V. 11. N 1. P. 25-47. DOI: 10.1002/cssc.201701469.
11. Клушин В.А., Галкин К.И., Кашпарова В.П., Криводаева Е.А., Кравченко О.А., Смирнова Н.В., Чернышев В.А., Анаников В.П. Технологические основы переработки фруктозы в соединение-платформу - 5-гидроксиметил-фурфурол высокой чистоты. Журн. орг. химии. 2016. Т. 52. № 6. С. 783-787. DOI: 10.1134/S1070428016060014.
12. Chernysheva D.V., Klushin V.A., Zubenko A.F., Pudova L.S., Kravchenko O.A., Chernyshev V.M., Smirnova N.V. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid over Pt/C catalysts synthesized by pulse alternating current technique. Mendeleev Commun. 2018. V. 28. N 4. P. 431-433. DOI: 10.1016/j.mencom.2018.07.031.
REFERENCES
1. Krahling L., Krey J., Jakobson G., Grolig J., Miksche
L. Allyl compounds. In: Ullmann's Editorial Advisory Board (eds) Ullmann's encyclopedia of industrial che m-istry. Wiley-VCH: Wein heim. 2000. P. 447-469. DOI: 10.1002/14356007.a01_425.
2. Gorbunova M.N., Borisova I.A. Copolymerization of 2,2-diallyl-1,1,3,3-tetraethylguanidinium chloride and alkyl methacrylates. Polym. Sci. Ser. B. 2016. V. 58. P. 650-658. DOI: 10.1134/S 1560090416060075.
3. Borisov I.M., Rashidova S.T, Luksha R.S. Water-absorbing capacity of copolymers of diallyldimethylammonium chloride and acrylamide. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2015. V. 58. N 6. P. 62-65 (in Russian).
4. Larsen D.B., S0nderb»k-J0rgensen R., Duus J.0., Dau-gaard A.E. Investigation of curing rates of bio-based thiolene films from diallyl 2,5-furandicaboxylate. Eur. Polymer J. 2018. V. 102. P. 1-8. DOI: 10.1016/j.eurpolymj.2018.03.005.
5. Gorbunova M.N. Copolymerization of 2, 2-Diallyl-1, 1, 3, 3-tetraethylquanidinium Chloride with N-(4-Acetylphenyl) maleimide. Am. J. Polymer Sci. 2012. V. 2. N 4. P. 62-66. DOI: 10.5923/j.ajps.20120204.03.
6. Glagolev N.N., Zaitsev S.Yu., Zaichenko N.L., Korshi-kova A.V., Maksimov V.I., Oskina O.Yu., Staroverova I.N. Antistatic properties of copolymers of N,N-dimethyl-N, N-diallyl-ammonium chloride and methyl methacrylate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2008. V. 51. N 9. P. 59-62 (in Russian).
7. Rosatella A.A., Simeonov S.P., Frade R.F., Afonso C.A. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry. 2011. V. 13. N 4. P. 754-793. DOI:10.1039/C0GC00401D.
8. Gorbunova M.N., Tiunova T.G. New N-allylmaleimide-based copolymers: Synthesis and thermal properties. Polymer Sci. Ser. B. 2015. V. 57. N 4. P. 304-312. DOI: 10.1134/S 1560090415040041.
9. Gerardy R., Morodo R., Estager J., Luis P., Debecker D.P., Monbaliu J.-Ch.M. Sustaining the Transition from a petro-based to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chem. 2019. V. 377. N 1. P. 111-145. DOI: 10.1007/s41061-018-0222-3.
10. Lima C.G.S., Monteiro J.L., de Melo Lima T., Weber Paixao M., Correa A.G. Angelica Lactones: From Biomass Derived Platform Chemicals to Value Added Products. Chem. Sus. Chem. 2018. V. 11. N 1. P. 25-47. DOI: 10.1002/cssc.201701469.
11. Klushin V.A., Galkin K.I., Kashparova V.P., Krivodaeva E.A., Kravchenko O.A., Smirnova N.V., Chernyshev V.A., Ananikov V.P. Technological basis for the transformation of fructose into a versatile platform, high purity 5-hydroxy-methylfurfural. Zhurn. Org. Khim. 2016. V. 52. P. 783-787. DOI: 10.1134/S1070428016060014. (in Russian).
13. Клушин В.А., Кашпарова В.П., Кашпаров И.С., Чусь Ю.А., Чижикова А.А., Молодцова Т.А., Смирнова Н.В.
Эффективный синтез диаллиловых эфиров фуранового ряда из фруктозы и получение сополимеров на их основе. Изв. Акад. наук. Сер. химическая. 2019. Т. 68. С. 570-577. DOI: 10.1007/s11172-019-2456-9.
14. Indriyani L., Rohman A., Riyanto S. Physico-chemical characterization of avocado (Persea americana Mill.) oil from three Indonesian avocado cultivars. Res. J. Med. Plants. 2016. V. 10. P. 67-78. DOI: 10.3390/molecules24112172.
15. Сутягин В.М., Ляпков А.А. Определение относительных констант совместной полимеризации виниловых мономеров. Томск: Темплан ТПУ. 1995. 100 с.
16. Ashirov R.V., Zemlyakov D. I., Lyapkov A.A., Kiselev S.A, Vervacke D. The relative reactivity of 2,3-dicarbomethoxy-5-norbornenes in metathesis polymerization using the original n-chelating ruthenium carbene complex. J. Appl. Polymer Sci. 2014. V. 131. N 8. P. 4013040137. DOI: 10.1002/app.40130.
17. American Society for Testing and Materials. ASTM D882-02. Standard test method for tensile properties of thin plastic sheeting. Astm International. West Conshohocken. PA. 2002. P. 9. DOI: 10.1520/D0882-02 (https://www.astm.org/Standaids/D882).
18. Bao Y.Z., Weng Z.X., Huang Z.M., Pan Z.R. Several features of vinyl chloride-diallyl phthalate suspension co-polymerization. J. Appl. Polymer Sci. 2000. V. 77. P. 156162. DOI: 10.1002/(SICI)1097-4628(20000705)77:1<156::AID-APP21>3.0.CO;2-O.
19. Gu A. Thermal and mechanical performances of diallyl phthalate/clay nanocomposites. Polymer-Plastics Tech-nol. Eng. 2006. V. 45. N 8. P. 957-961. DOI: 10.1080/ 03602550600718357.
20. Bo Y., Cui J., Cai Y., Xu S. Preparation and characterization of poly (methyl methacrylate) and poly (maleic anhy-dride-co-diallyl phthalate) grafted carbon black through y-ray irradiation. Radiation Phys. Chem. 2016. V. 119. P. 236-246. DOI: 10.1016/j.radphyschem. 2015.11.005.
21. Abdallah A.M. The effect of hydrogel particle size on water retention properties and availability under water stress. Internal Soil Water Conserv. Res. 2019. V. 7. N 3. P. 275285. DOI.10.1016/j.iswcr.2019.05.001
22. Barakat M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011. V. 4. N 4. P. 361377. DOI: 10.1016/j.arabjc.2010.07.019.
23. Fu L., Shuang C., Liu F., Li A., Li Y., Zhou Y., Song H. Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. J. Hazard. Mat. 2014. V. 272. P. 102-111. DOI: 10.1016/j.jhazmat.2014.02.047.
Поступила в редакцию (Received) 13.04.2020 Принята к опубликованию (Accepted) 13.05.2020
12. Chernysheva D.V., Klushin V.A., Zubenko A.F., Pudova L.S., Kravchenko O.A., Chernyshev V.M., Smirnova N.V. Base-free aerobic oxidation of 5-hydroxymethyl-furfural to 2,5-furandicarboxylic acid over Pt/C catalysts synthesized by pulse alternating current technique. Mendeleev Commun. 2018. V. 28. N 4. P. 431-433. DOI: 10.1016/j.mencom.2018.07.031.
13. Klushin V.A., Kashparova V.P., Kashparov I.S., Chus Yu.A., Chizhikova A.A., Molodtsova T.A., Smirnova N.V. Efficient synthesis of diallyl esters of the furan series from fructose and preparation of copolymers on their basis. Izv. Akad. Nauk. Ser. Khim.. 2019. V. 68. P. 570-577. DOI: 10.1007/s11172-019-2456-9. (in Russian).
14. Indriyani L., Rohman A., Riyanto S. Physico-chemical characterization of avocado (Persea americana Mill.) oil from three Indonesian avocado cultivars. Res. J. Med. Plants. 2016. V. 10. P. 67-78. DOI: 10.3390/molecu-les24112172.
15. Sutyagin V.M., Lyapkov A.A. Determination of Relative Constants Joint Polymerization of Vinyl Monomers. Tomsk: Templar TPU. 1995. 100 p. (in Russian).
16. Ashirov R.V., Zemlyakov D. I., Lyapkov A.A., Kiselev S.A, Vervacke D. The Relative relative reactivity of 2,3-dicarbomethoxy-5-norbornenes in metathesis polymerization using the original n-chelating ruthenium carbene complex. J. Appl. Polymer Sci. 2014. V. 131. N 8. P. 4013040137. DOI: 10.1002/app.40130.
17. American Society for Testing and Materials. ASTM D882-02. Standard test method for tensile properties of thin plastic sheeting. Astm International. West Conshohocken. PA. 2002. P. 9. DOI: 10.1520/D0882-02 (https://www.astm.org/Standaids/D882).
18. Bao Y.Z., Weng Z.X., Huang Z.M., Pan Z.R. Several features of vinyl chloride-diallyl phthalate suspension co-polymerization. J. Appl. Polymer Sci. 2000. V. 77. P. 156162. DOI: 10.1002/(SICI)1097-4628(20000705)77:1<156::AID-APP21>3.0.CO;2-O.
19. Gu A. Thermal and mechanical performances of dial-lyl phthalate/clay nanocomposites. Polymer-Plastics Technol. Eng. 2006. V. 45. N 8. P. 957-961. DOI: 10.1080/03602550600718357.
20. Bo Y., Cui J., Cai Y., Xu S. Preparation and characterization of poly (methyl methacrylate) and poly (maleic anhy-dride-co-diallyl phthalate) grafted carbon black through y-ray irradiation. Radiation Phys. Chem. 2016. V. 119. P. 236-246. DOI: 10.1016/j.radphyschem. 2015.11.005.
21. Abdallah A.M. The effect of hydrogel particle size on water retention properties and availability under water stress. Internat. Soil Water Conserv. Res. 2019. V. 7. N 3. P. 275285. DOI.10.1016/j.iswcr.2019.05.001
22. Barakat M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011. V. 4. N 4. P. 361377. DOI: 10.1016/j.arabjc.2010.07.019.
23. Fu L., Shuang C., Liu F., Li A., Li Y., Zhou Y., Song H. Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. J. Hazard. Mat. 2014. V. 272. P. 102-111. DOI: 10.1016/j.jhazmat.2014.02.047.