Научная статья на тему '1,2,5-telluradiazoloporphyrazines. 2. ⊗ direct exchange of Te by Se and conversion of 1,2,5-telluradiazole ring to pyrazine fragment'

1,2,5-telluradiazoloporphyrazines. 2. ⊗ direct exchange of Te by Se and conversion of 1,2,5-telluradiazole ring to pyrazine fragment Текст научной статьи по специальности «Химические науки»

CC BY
49
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Макрогетероциклы
WOS
Scopus
ВАК
Область наук
Ключевые слова
ГЕТЕРОЦИКЛИЧЕСКИЕ АНАЛОГИ ФТАЛОЦИАНИНА / HETEROCYCLIC PHTHALOCYANINE ANALOGUES / ПОРФИРАЗИНЫ / FUSED PORPHYRAZINES / 5-TELLURADIAZOLE / 5-SELENADIAZOLE / PYRAZINE / DETELLURATION / 5-ТЕЛЛУРАДИАЗОЛ / 5-СЕЛЕНАДИАЗОЛ / ПИРАЗИН / ДЕТЕЛЛУРИРОВАНИЕ

Аннотация научной статьи по химическим наукам, автор научной работы — Mikhailov Maksim S., Stuzhin Pavel A.

Treatment of Mg II complex of tert-butyl substituted 1,2,5-telluradiazolo[3,4-b]tribenzo[g,l,q]porphyrazine with SeO 2 in dichloromethane leads to direct substitution of Te by Se, while the reaction with diaminomaleonitrile in ethanol affords (5,6-dicyanopyrazino)[2,3-b]tribenzo[g,l,q]porphyrazines. The obtained results demonstrate that 1,2,5-telluradiazoloporphyrazines can be used as synthetic analogues of vicinal diamino-, diiminoand dioxoporphyrazines.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «1,2,5-telluradiazoloporphyrazines. 2. ⊗ direct exchange of Te by Se and conversion of 1,2,5-telluradiazole ring to pyrazine fragment»

Porphyrazines

Порфиразины

МаИрОГ8Т8рОЦ>1КЛЫ

http://macroheterocycles.isuct.ru

Communication

Сообщение

DOI: 10.6060/mhc150560s

1,2,5-Telluradiazoloporphyrazines. 2.® Direct Exchange of Te by Se and Conversion of 1,2,5-Telluradiazole Ring to Pyrazine Fragment

Maksim S. Mikhailov, and Pavel A. Stuzhin@

Dedicated to Professor Andrej Fedorovich Mironov on the Occasion of his 80th Birthday

Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, RF-153000 Ivanovo, Russia @Corresponding author E-mail: [email protected]

Treatment of Mg11 complex of tert-butyl substituted 1,2,5-telluradiazolo[3,4-b]tribenzo[g,l,q]porphyrazine with SeO2 in dichloromethane leads to direct substitution of Te by Se, while the reaction with diaminomaleonitrile in ethanol affords (5,6-dicyanopyrazino)[2,3-b]tribenzo[g,l,q]porphyrazines. The obtained results demonstrate that 1,2,5-telluradiazoloporphyrazines can be used as synthetic analogues of vicinal diamino-, diimino- and dioxoporphyrazines.

Keywords: Heterocyclic phthalocyanine analogues, fused porphyrazines, 1,2,5-telluradiazole, 1,2,5-selenadiazole, pyrazine, detelluration.

1,2,5-Теллурадиазолопорфиразины. 2.® Прямое замещение Te на Se и превращение 1,2,5-теллурадиазольного фрагмента в пиразиновый

М. С. Михайлов, П. А. Стужин@

Посвящается профессору Андрею Фёдоровичу Миронову по случаю его 80-летнего юбилея

НИИ макрогетероциклических соединений, Ивановский государственный химико-технологический университет, 153000 Иваново, Россия ®Е-шаИ: [email protected]

При взаимодействии Ы^1 комплекса трет-бутил-замещённого 1,2,5-теллурадиазоло[3,4-Ь]трибензо^,1^]-порфиразина с SeO2 в дихлорметане наблюдается замещение атома теллура на селен, а реакция с диаминомалединитрилом в этаноле приводит к (5,6-дицианопиразино)[2,3-Ь]трибензо^,1^]порфиразинам. Полученные результаты показывают, что 1,2,5-теллурадиазолопорфиразины могут использоваться в качестве синтетических аналогов вицинальных диамино-, диимино- и диоксопорфиразинов.

Ключевые слова: Гетероциклические аналоги фталоцианина, порфиразины, 1,2,5-теллурадиазол, 1,2,5-селенадиазол, пиразин, детеллурирование.

Porphyrazines with annulated 1,2,5-thiadiazole and 1,2,5-selenadiazole rings have been actively studied over last two decades[1] and recently we have also reported first porphyrazines with fused 1,2,5-telluradiazole ring(s).[2,3] 1,2,5-Chalcogenodiazoles are known as strong electron-

0 Part 1 - see Ref. [2].

Макрогетероциклы /Macroheterocycles 2015 8(2) 177-180

acceptor n-heterocycles[4] and their fusion to porphyrazine core leads to highly electron-deficient macroheterocy-clic compounds[1,2a] which can be considered as perspective functional materials for design of organic electronic devices. Indeed, tetra(1,2,5-thiadiazolo)porphyrazine and its metal complexes were used as «-type organic semiconductors in the prototypes of field-effect transistors and photovoltaic cells.[5,6] The presence of 1,2,5-chalcogenodiazole

© ISUCT Publishing 177

ring opens interesting synthetic possibilities for peripheral modification of porphyrazine macrocycle. Thus, it was demonstrated that 1,2,5-selenadiazoloporphyrazines can be considered as convenient precursors for unstable porphyra-zines with vicinal amino groups in pyrrole ring(s).[7,8] They can be prepared in situ by reductive ring-opening of fused 1,2,5-selenadiazole fragment with H2S in pyridine and used directly for further functionalization, e.g. for preparation of porphyrazines with attached formamide groups,[9] Schiffbase moieties,[10] fused pyrazine ring(s).[711] Oxidative scission of pyrrole ring in porphyrazinediamine occurring in the presence of oxygen allows the deeper transformation of the whole macrocyclic framework affording pyrazinipor-phyrazine, porphyrazinoid containing pyrazine ring instead of one of four pyrrole rings.[12] The Se atom in fused 1,2,5-selenadiazoles can be also directly exchanged by S when treated in the presence of pyridine with H2S in CHCl3[13] or with S2Cl2 in CH3CN.[14] Direct exchange of O or S atoms by Se upon treatment of fused 1,2,5-oxa(thia)diazoles by SeO2 in DMF or CH3CN is also possible.[15] One can expect that fused 1,2,5-telluradiazole ring should be more reactive, but its detelluration reactions are still poorly studied.

We have studied reactions of Mg11 complex of tert-butyl substituted 1,2,5-telluradiazolo[3,4-6]tribenzo[g,/,q,]-porphyrazine (1) with selenium(IV) dioxide and with diami-nomaleonitrile (Scheme 1) and found that 1,2,5-tellura-diazoloporphyrazines can be used as synthetic analogues of vicinal diamino-, diimino- and dioxoporphyrazines.

The Mg11 complex of tert-butyl substituted 1,2,5-telluradiazolo[3,4-b]tribenzo[g,l,q]porphyrazine (1)[2] (5 mg, 0.006 mmol) and SeO2 (1 mg, 0.01 mmol) were dissolved

677

400

500

600

700

800 A nm

Figure 1. UV-VIS spectra of Mg11 complex 1 (A) in CH2Cl2 and its change after heating with SeO2 leading to formation of the Se-analogue 2 (B).

in CH2Cl2 (5 ml) in the presence of few drops of pyridine and refluxed for 30 min. The reaction process was monitored spectrophotometrically by disappearance of the double Q-band of the Te-containing Mg11 complex 1 (^max= 677 and 722 nm) and appearance of the new maxima at 672 and 709 nm (Figure 1).

After isolation the product of the reaction was characterized also by mass-spectrometry and by IR spectroscopy, which indicate that treatment of Mg11 porphyrazine 1 with SeO2 leads to direct substitution of Te by Se and formation of the Se-containing Mg11 porphyrazine 2.§ The MALDI-TOF

Scheme 1.

178

Макрогетероциmbl/Macroheterocycles 2015 8(2) 177-180

M. S. Mikhailov, and P. A. Stuzhin

Figure 2. MALDI-TOF mass-spectrum of the reaction product obtained upon heating of MgII complex 1 with SeO2 in CH2Cl2.

mass-spectrum of the obtained product (Figure 2) contains the intense peak of the molecular ion with m/z = 760 and iso-topic distribution pattern characteristic for the Se-analogue 2 (calc. for C40H36MgN10Se m/z = 760.2).

The UV-VIS and IR spectra of the reaction product correspond to the spectra of the Mg11 complex 2 obtained alternatively by co-cyclotetramerization of 1,2,5-selenadiazolo-3,4-dicarbonitrile and 4-fer/-butylphthalodinitrile.[16]§ The maximum of the long-wave component of the Q-band for the Se-containing porphyrazine 2 (709 nm) has an intermediate position between the S-analogue (682 nm[17]) and Te-analogue 1 (722 nm). This is indicative that the stabilization effect of the 1,2,5-chalcogenodiazole fragment on the highest occupied molecular orbital (HOMO) is strengthened along with the increase of electronegativity in the series Te < Se < S. Vibration bands appearing in the IR spectrum of 2 at 1235, 696 cm-1 can be assigned to the stretching (CN/ CC and SeN) and at 432 cm-1 to the torsion vibrations of the 1,2,5-selenadiazole ring.[18] Since 1,2,5-selenadiazoles are usually obtained by treatment of v/c-diamines with SeO2,[4] the observed formation of the Se-containing porphyzine 2 by reaction between SeO2 and the Te-analogue 1, allows to consider the latter as protected (hidden) form of porphyrazine with vicinal diamine moiety.

On the other hand, the easy detelluration of 1,2,5-tellu-radiazole ring indicates its structural similarity to diimines. Indeed, according to DFT calculations of Mg11 complexes of tetra(1,2,5-chalcogenodiazolo)porphyrazines the double bond character of the CN bonds adjacent to chalcogen atom is increased in the order S(1.507) < Se(1.610) < Te(1.678), while the NX bond order is decreased S(1.211) > Se(1.107) > Te(1.008).[19] Reaction between diimines (or a-diketones) and the vicinal diamines can be directly used for the synthesis of pyrazine ring, e.g. reaction with diaminomaleo-dinitrile provides pyrazine-2,3-dicarbonitrile - precursors for pyrazinoporphyrazines.[20] We have conducted the reaction between Te-containing Mg11 porphyrazine 1 (8 mg, 0.01 mmol) and diaminomaleodinitrile (4 mg, 0.04 mmol) in anhydrous ethanol (5 ml) upon reflux (4 h) and observed that it leads to detelluration and formation of the Mg11 complex of 2,3-dicyanopyrazino[2,3-b]tribenzo[g,l,q]porphyrazine 3a.1

600

660

720

780

840 m/z

Figure 3. MALDI-TOF mass-spectrum of pyrazine fused porphyrazines 2a (top) and 2b (bottom) obtained upon interaction of Mg11 complex 1 with diaminomaleodinitrile.

When the reaction was accomplished in the mixture of ethanol and acetic acid (3:1) the corresponding metal free species 3b# was obtained.

In the negative region MALDI-TOF mass-spectra of 3a the molecular ion peak is observed at m/z=756 (100%, [M]-) which is followed by peaks at 775 Da (28%) and 791 Da (25%) corresponding to the stable anions [M+F]- and [M+Cl]- formed by axial coordination to central Mg atom of fluoride and chloride, respectively. In the case of metal free porphyrazine 3b the molecular ion peak [M]- is observed at m/z=734 Da.

UV-VIS spectra of the pyrazine fused porphyrazines 3a,b (Figure 4) are typical for low-symmetry tribenzo-porphyrazines with one annulated heterocycle[1617] and contain a split 0-band with maxima at 665 and 705 nm for 3a and 688 and 725 nm for 3b. The bathochromic shift of the long-wave component of the 0-band in 3b as compared to tribenzoporphyrazines with fused 1,2,5-thiadiazole and 1,2,5-selenadiazole rings[1617] indicates the stronger polar-

665

705

400

500

600

700

800 Л nm

Figure 4. UV-VIS spectra of Mg11 complex 3a (A) and corresponding metal free porphyrazine 3b (B) in CH2Cl2 containing 1 % of MeOH.

Макрогетероциклы/Macroheterocycles 2015 8(2) 177-180

179

ization of the porphyrazine п-chromophore by dicyano substituted pyrazine fragment.

So far the low-symmetry porphyrazines bearing one fused dicyanopyrazine fragment were only prepared starting from Cu11 and Ni11 complexes of 2,3-dihydroxy-7,8,12,13,17,18-hexapropylporphyrazine by trapping their unstable oxidation products - vicinal dioxoporphyrazines with diaminomaleonitrile.[21] Our approach to dicyanopyrazi-noporphyrazines by one stage modification of 1,2,5-telluradi-azoloporphyrazines has an advantage over their preparation from vicinal dihydroxyporphyrazines, which can be obtained only in multistage procedure.[21]

In conclusion, we have demonstrated that 1,2,5-telluradiazoloporphyrazines can be considered as protected form of porphyrazines with vicinal amino, imino or oxo groups. Porphyrazines 3a,b containing fused dicyanopyrazine fragment might be quite interesting synthetic precursors for binuclear bisporphyrazines joined by the pyrazine bridge.

Acknowledgements. This work was supported by Russian Foundation of Basic Research (grant 13-03-0902a).

Notes and References

§ Mg11 porphyrazine 2. Method A. From 1 and SeO2. Yield 80 %. Method B. From 1,2,5-selenadiazolo-3,4-dicarbonitrile and 4-tert-butylphthalodinitrile.[16] Yield 3 %. Rf=0.65 (CH2Cl2+5%MeOH). MALDI-TOF MS m/z=760 [M]+ (calcd for C40H36MgN10Se -760.21). UV-VIS (CH2Cl2) Xmax nm (lge): 353 (4.85), 520(3.58), 612 (4.03), 651 (4.33), 671 (4.65), 707 (4.66). IR (KBr) v cm-1: 2957s, 2802m, 2866m, 1613m, 1487s, 1393m, 1326m, 1256m, 1235w, 1158m, 1084s, 1046m, 832w, 752m, 696m, 432w. Anal. Found: C, 61.24; H, 4.98; N, 18.30%. Calcd. for C40H36MgN10SeH2O (778.22) C, 61.68; H, 4.92; N, 17.99%.

1 Mg11 porphyrazine 3a. The reaction mixture was filtrated and the residue after evaporation of the solvent was chromatographed on silica (eluent - CH2Cl2 + 5% MeOH). Yield 40 %. Rf=0.5 (CH2Cl2 +5%MeOH). MALDI-TOF MS (negative) m/z = 75(5 [M]- (100%,

calcd for C44H36MgN12 - 756.30), 775 [M+F]- (28%), 791 [M+Cl]-(25%). 44 36 12

# Porphyrazine 3b. The residue after evaporation of the solvent was dissolved in acetone, passed through alumina and then chromatographed on silica (eluent - CH2Cl2+ 2% MeOH). Yield 30 %. Rf=0.75 (CH2Cl2+1%MeOH). MALDI-TOF MS (negative) m/z = 734 [M]- (100%, calcd for C44H38N12 - 734.33).

1. Donzello M.P., Ercolani C., Stuzhin P.A. Coord. Chem. Rev. 2006, 250, 1530-1561.

2. Stuzhin P.A., Mikhailov M.S., Yurina E.S., Bazanov M.I., Koifman O.I., Pakhomov G.L., Travkin V.V., Sinelshchikova A.A. Chem. Comm. 2012, 10135-10137.

3. Svec J., Zimcik P., Novakova L., Rakitin O.A., Amelichev S., Stuzhin P.A., Novakova V. Eur. J. Org. Chem. 2015, 596-604.

4. Lonchakov A.V., Rakitin O.A., Gritsan N.P., Zibarev A.V. Molecules 2013, 18, 9850-9900.

5. (a) Miyoshi Y., Kubo M., Fujinawa T., Suzuki Y., Yoshikawa H., Awaga K. Angew. Chem, Int. Ed. 2007, 46, 5532-5536; (b)

Fujimoto T., Miyoshi Y., Matsushita M.M., Awaga K. Chem. Commun. 2011, 5837-5839; (c) Miyoshi Y., Fujimoto T., Yoshikawa H., Matsushita M.M., Awaga K., Yamada T., Ito H. Organic Electronics 2011, 12, 239-243; (d) Miyoshi Y., Takahashi K., Fujimoto T., Yoshikawa H., Matsushita M.M., Ouchi Y., Kepenekian M., Robert V., Donzello M.P., Ercolani C., Awaga K. Inorg. Chem. 2012, 51, 456-462.

6. (a) Stuzhin P.A., Mikhailov M.S., Travkin V.V., Gudkov E.Y., Pakhomov G.L. Macroheterocycles 2012, 5, 162-165 [DOI: 10.6060/mhc2012.120573p]; (b) Stuzhin P.A., Mikhailov M.S., Travkin V.V., Pakhomov G.L. In: Recent Developments in Coordination, Bioinorganic, and Applied Inorganic Chemistry, Vol. 11 [Melnik M., Segl'a P., Tatarko M., Eds.], Bratislava, Press of Slovak University of Technology, 2013. 318-323. [ISBN 978-80-227-3918-4; ISSN 1335-308X. DOI: 10.13140/2.1.2341.3761]

7. Bauer E., Ercolani C., Galli P., Popkova I., Stuzhin P.A. J. Porphyrins Phthalocyanines 1999, 3, 371-379.

8. Kozlov A.V., Stuzhin P.A. Russ. J. Org. Chem. 2013, 49, 913921.

9. Ul-Haq A., Stuzhin P.A. Macroheterocycles 2008, 1, 82-84 [https://macroheterocycles.isuct.ru/ru/system/files/ 08MHC_82-84.pdf].

10. Zhao M., Stern C., Barrett A.G.M., Hoffman B.M. Angew. Chem., Int. Ed. 2003, 42, 462-465.

11. (a) Onay H., Esat B., Öztürk R. Polyhedron 2010, 29, 13141316; (b) Baum S.M., Trabanco A.A., Montalban A.G., Micallef A.S., Zhong C., Meunier H.G., Suhling K., Phillips D., White A.J.P., Williams D.J., Barrett A.G.M., Hoffman B.M. J. Org. Chem. 2003, 68, 1665-1670.

12. Kozlov A.V., Stuzhin P.A. Macroheterocycles 2014, 7, 170173.

13. Ul-Haq A., Donzello M.P., Stuzhin P.A. Mendeleev Commun. 2007, 17, 337-339.

14. Konstantinova L.S., Knyazeva E.A., Rakitin O.A. Molecules 2015, 20, 14522-14532.

15. Konstantinova L.S., Knyazeva E.A., Nefyodov A.A., Camacho P.S., Ashbrook S.E.M., Woollins J. D., Zibarev A.V., Rakitin O.A. Tetrahedron Letters 2015, 56, 1107-1110.

16. Solovyov K.N., Stuzhin P.A., Kuzmitsky V.A., Volkovich D.I., Knyukshto V.N., Borisevich E.A., Ul-Haque A. Macroheterocycles 2010, 3, 51-62. [http://macroheterocycles.isuct.ru/sites/ default/files/MHC2010_t03n01_51-62.pdf].

17. Gaberkorn A.A., Donzello M.-P., Stuzhin P.A. Russ. J. Org. Chem. 2006, 42, 929-935 (Engl. transl.) [Zh.Org. Khim. 2006, 42, 946-952 (in Russ.)].

18. El-Azhary A.A. Acta Chem. Scand. 1995, 49, 11-19.

19. Zhabanov Yu.A., Tverdova N.V., Stuzhin P.A., Girichev G.V. Theoretical study of the molecular structure of magnesium tetrakis(chalocogenadiazolo)porphyrazines. In: Proceedings of VI Russian Youth School Conference "Quantum-Chemical Calculations: Structure and Reactivity of Organic and Inorganic Molecules. Ivanovo, ISUCT: 2013. pp. 410-413 (in Russ.) [http://www.isuct.ru/qc6/Man_qc6.pdf].

20. Donzello M.P., Ercolani C., Novakova V., Zimcik P., Stuzhin P.A. Coord. Chem. Rev. 2015, DOI: 10.1016/j. ccr.2015.09.006.

21. Bellec N., Montalban A.G., Williams D.B.G., Cook A.S., Anderson M.E., Feng X.D., Barrett A.G.M., Hoffman B.M. J. Org. Chem. 2000, 65, 1774-1779.

Received 05.05.2015 Accepted 18.06.2015

180

Макрогетероциклы /Macroheterocycles 2015 8(2) 177-180

i Надоели баннеры? Вы всегда можете отключить рекламу.