Научная статья на тему 'Synthesis and characterization of poly(lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide'

Synthesis and characterization of poly(lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide Текст научной статьи по специальности «Биологические науки»

CC BY
174
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Biotechnologia Acta
CAS
Область наук
Ключевые слова
VIRUS OF THE FOOT-AND-MOUTH DISEASE / POLY (LACTIC-CO-GLYCOLIC-ACID) MICROPARTICLES / ВіРУС ЯЩУРУ / МіКРОЧАСТИНКИ ПОЛі(МОЛОЧНОї-КОГЛіКОЛЕВОї КИСЛОТИ) / ВИРУС ЯЩУРА / МИКРОЧАСТИЦЫ ПОЛИ(МОЛОЧНОЙ-КОГЛИКОЛЕВОЙ КИСЛОТЫ)

Аннотация научной статьи по биологическим наукам, автор научной работы — Z. Mustafaeva

Цель исследования — синтезировать и охарактеризовать синтетический пептид вируса ящура 40–60, нагруженный микрочастицами поли(молочной-когликолевой кислоты). Для получения микрочастиц с тремя различными количествами пептида (5; 10 и 15 мг) был использован метод одноэмульсионного испарения. Полученные микрочастицы были подробно охарактеризованы с помощью методов определения выхода реакции, эффективности инкапсулирования, загрузки лекарствами, розмера частичек, коэффициента полидисперсности и зета-потенциала.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

СИНТЕЗ И ХАРАКТЕРИСТИКА МИКРОЧАСТИЦ ПОЛИ(МОЛОЧНОЙ- КОГЛИКОЛЕВОИ) КИСЛОТЫ, НАГРУЖЕННЫХ СИНТЕТИЧЕСКИМ ПЕПТИДОМ ВИРУСА ЯЩУРА 40-60

The aim of the research was to synthesize and characterize the poly (lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide. Single emulsion solvent evaporation method was used for the production of microparticles with theree diferent (5; 10 and 15 mg) peptide amounts and obtained microparticles were characterized by using yield reaction, encapsulation efficiency, drug loading, particle size, polydispersity index, and zeta potential.

Текст научной работы на тему «Synthesis and characterization of poly(lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide»

UDC 57.065.38 https://doi.org/10.15407/biotech10.01.052

SYNTHESIS AND CHARACTERIZATION OF POLY(LACTIC-CO-GLYCOLIC-ACID) MICROPARTICLES LOADED WITH FOOT-AND-MOUTH DISEASE VIRUS 40-60 SYNTHETIC PEPTIDE

Z. Mustafaeva Yildiz Technical University, Chemical and Metallurgy Faculty,

Istanbul, Turkey

E-mail: zmustafaeva@yahoo.com

Received 27.12.2016

The aim of the research was to synthesize and characterize the poly (lactic-co-glycolic-acid) microparticles loaded with foot-and-mouth disease virus 40-60 synthetic peptide. Single emulsion solvent evaporation method was used for the production of microparticles with theree diferent (5; 10 and 15 mg) peptide amounts and obtained microparticles were characterized by using yield reaction, encapsulation efficiency, drug loading, particle size, polydispersity index, and zeta potential.

Key words: virus of the foot-and-mouth disease, poly (lactic-co-glycolic-acid) microparticles.

Foot-and-mouth disease (FMD) virus, the pathogen of FMD disease which is a member of the Picornaviridae family Aphthovirus genus, has a single positively charged RNA chain containing 8500 nucleotides. The un-enveloped capsule of the virus contains VP1, VP2, VP3 and VP4 structural proteins. The synthetic peptide used in this study is defined as the 40-60 viral peptide series of VP1 Foot-and-Mouth disease capsid protein [1-4].

Food-and-mouth disease is an infectious disease that affects the cloven-hoofed animals including cattle, goat, sheep and pigs. This highly infectious disease can be transmitted via infected or contaminated animals, animal products and humans. This disease can be seen all around the globe and can cause enormous economic losses due to production losses and international commerce sanctions. The control and prevention of the disease is extremely difficult. Vaccination is one of the precautions that can be taken against this disease [5-7].

Vaccination with the intention to prevent and control FMD has been used since the 1900 s. Currently, vaccination against this disease depends on cultivation of FMD virus in bio-secure conditions and inactivation via chemical methods. Due to the disadvantages of inactive vaccines such as requirement of safety precautions and cold chain or short shelf life,

new generation more effective vaccines need to be developed. In the last few decades the studies to develop a biotechnological vaccine for FMD is ongoing [8-10].

New vaccine studies involve synthetic peptides, recombinant protein subunits, protein-polysaccharide conjugates and plasmid DNAs [11, 12]. Despite its advantages, these approaches produce weak immune response. For this reason, using adjuvants in order to obtain a more robust immune response is aimed [13, 14].

With the recent studies showing that the size of the particles is crucial for adjuvant activity, using nano- and microparticles as adjuvants has been focused on vaccine studies. Particle carriers are effective delivery systems for antigens and increase the antigen uptake on cellular level. They are effective on controlled antigen release and can protect the antigen integrity from degradation [15].

Carrier polymers, co-polymers, proteins and lipids are widely used in vaccine delivery system production [16-22]. Biocompatibility, biodegradability, rate of degradation, hydrophilic property of the chosen polymer affects the micro-particles formed. Poly (lactic-co-glycolic-acid) (PLGA), which one of the most widely used co-polymer, is a biopolymer approved by FDA and has

several advantages such has inert properties in physical environments, degradability in biological environments, biocompatible properties and being able to be degraded into non-toxic products. PLGA degrades into lactic acid and glycolic acid monomers in body which enter the citric acid cycle where they are metabolized into carbon dioxide (CO2) and water (H2O) [15, 23, 24].

In this study, FMDV 40-60 peptide epitope (Trp-Val-Lys-Ile-Asn-Asn-Thr-Ser-Pro-Thr-His-Val-Ile-Asp-Leu-Met-Gln-Thr-His-Gln-His-Gly), synthesized via solid phase peptide synthesis method, encapsulated PLGA micro-particles were synthesized for using vaccine models. Synthesized microparticles were characterized by methods of ZetaSizer, scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Loading and capsulations yields were calculated, bio-release experimentations were performed.

Materials and Methods

Materials

Foot-and-mouth disease 40-60 antigenic peptide (FM) (Trp-Val-Lys-Ile-Asn-Asn-Thr-Ser-Pro-Thr-His-Val-Ile-Asp-Leu-Met-Gln-Thr-His-Gln-His-Gly) was synthesized in our previous study via F-moc chemistry [3]. Poly(lactic-co-glycolic acid) -PLGA — (lactic to glycolic acid ratio in the copolymer is 50:50, inherent viscosity 0.45-0.60 dL/g, Mw — 38-54 kDa P50/50), polyvinyl alcohol (PVA), dichloromethane (DCM) was purchased from Sigma-Aldrich (St. Louis, Mo, USA). All other chemical reagents were of analytical grade. Ultra-pure water was acquired from Millipore MilliQ Gradient system.

Preparation of Microparticles

In the present study peptide loaded PLGA microparticles were produced according to a previously published single emulsion solvent evaporation methods [25, 26] with brief modifications. Firstly, the synthetic peptide and PLGA, which will form the organic phase, were dissolved in ethanol and DCM, respectively. Peptide solutions were prepared in three different amounts (5 mg, 10 mg, 15 mg) and added to PLGA solutions and mixed. Prepared organic solutions are added on 4 mL of 3% PVA solution, sonicated in ice bath for 2 min with 70 W and a power of 80% (Bandelin Sonopuls, Germany). Obtained uniform emulsion was stirred overnight on a magnetic stirrer for evaporation of the organic

solvents. Subsequently, the particles are collected by centrifugation (Sartorius-Biofuge) for 40 min at 10 000 rpm, washed three times with ultrapure water. The microparticles were lyophilized and stored at -80 °C.

Characterization of Microparticles

In the study, obtained microparticles were detailed analyzed by following parameters: reaction yield (RY), encapsulation efficiency (EE), drug loading (DL), particle size (Z-ave), polydispersity index (PDI), and zeta potential (ZP).

Reaction Yield, Encapsulation Efficiency and Drug Loading.

In the present study, the reaction yield was calculated gravimetrically using the formula given below:

RY (%) =

Amount of produced mlcropartlcte- (mg) Total amount of initial peptide and PLGA (trig}

x 100,

The drug loading and entrapped peptide was assayed by fluorescence spectroscopy (excitation wavelength 270 nm and emission wavelength 280-600 nm) analysis. EE was determined by using of the supernatants obtained after centrifugation for each of microparticles.

The peptide entrapment efficiency (EE) was determined using the formula given below:

EE {%) =

Encapsulated peptide amount (mg) The amount of peptide initially added (mg)

xiao-

The drug loading (DL) of peptide was calculated using the formula given below:

(0/ \ — Encapsulated, peptide amount (mg) ^^ Amount of produced micro par tide (trig)

Particle Size, Polydispersity Index and Zeta Potential Measurements of Microparticles Particle size, polydispersity index and zeta potential of microparticles were determined by dynamic light scattering (DLS) (Malvern Zetasizer, ZS, Malvern, UK). Measurements were done in triplicate, at 25 °C, using 0.8872 cP viscosity and 1.330 refractive index for the solutions, dielectric constant 79; f(ka) 1.50 (Smoluchowski). Before the measurement all samples were diluted to 1:30 dilution factors with ultra-pure water (Millipore).

FT-IR Measurements of Microparticles Fourier transform infrared (FTIR) spectroscopy measurements were performed by IR-Prestige 21 FTIR spectrophotometer

(Shimadzu, Japan) in the range from 4000 cm1 to 650 cm1 and a resolution of 4 cm1 and each sample were scanning 32 times. FTIR spectroscopy was used to characterize structural changes between free peptide and microparticles consisted after encapsulation process.

SEM Measurements of Microparticles

The surface morphology of microparticles was evaluated by scanning electron microscopy (SEM, Zeiss, EVO-LS 10) as previously described [27]. Lyophilized microparticles were fixed on metallic studs and then coated with gold under vacuum. SEM photomicrographs were taken at an acceleration voltage of 5 kV.

In vitro release

In vitro peptide release was studied at pH 7.4 in phosphate buffer solution (PBS) according to our previous study [27, 28]. 10 mg of peptide loaded microparticles were dissolved in 5 ml (PBS)-0.01% sodium azide and the microparticles suspension was incubated in a shaking incubator (120 rpm) at 37 °C. At specified time intervals (1, 2, 3, 4 h; 1, 2, 3, 7, 10, 16, 24, 30, 33 days), medium was fully removed and fresh medium (PBS) was added. Released peptide amount in the supernatant was measured with fluorescence spectroscopy at 270 nm excitation and 325 nm emission wavelength and calculated by using previously constructed standard calibration curve.

Results and Discussion

Reaction Yield, Encapsulation Efficiency and Drug Loading of Microparticles

In the present study, FMDV 40-60 synthetic peptide loaded PLGA microparticles was synthesized via single emulsion solvent evaporation methods by using different peptide amounts (5 mg ^ FMMP1, 10 mg ^ FMMP2 and 15 mg ^ FMMP3). Produced microparticles were detailed characterized for RY, EE, DL using gravimetric method and fluorescence spectrophotometer, respectively. Obtained results were given in Table.

Additionally, the changes in microparticles properties depending on the initial peptide amount are given in Fig. 2. It can be seen that, the DL of the microparticles increases with increasing of initial peptide amount. Conversely, the reaction yield of the microparticles decreases by the increasing of initial peptide amount.

Particle size and Zeta Potential Analysis of Microparticles

Also, produced microparticles were analyzed Zeta-sizer for particle size, polydispersity index (PDI) and zeta potential. The size distributions of the produced microparticles were shown in Fig. 2 and both zeta potential and PDI values were summarized in Table. It can be concluded that all particles have particle size around micrometers. The size distributions are narrow and there is no agglomeration in the particles.

Fourier transform infrared (FTIR) spectroscopy — FTIR Analysis of Microparticles

Synthesized microparticles were analyzed by FTIR spectrophotometer in comparison with FMDV 40-60 peptide and PLGA polymer, obtained spectrums were shown in Fig. 3. In the FT-IR spectrums, PLGA molecule showed peaks such as carbonyl -C=O stretching (1751 cm-1 strong and narrow), C-O stretching (1087 cm-1). Pure FMDV peptide (FM) sample showed amide C =O stretching (1660 cm-1). When the obtained spectrums are compared, it is seen that the FT-IR spectrums of microparticles and PLGA have the same chemical characteristics. In the FTIR spectrums of FMMP1, FMMP2 and FMMP3 peptides loaded microparticles, the main peak of peptide at 1 660 cm-1 were dramatically lowered and this situation indicates that FMDV 40-60 peptide was successfully loaded to PLGA microparticles.

Formulation Particle Size Z-ave (цт) Zeta Potential (mV) PDI RY (%) EE (%) DL (%)

FMMP1 1.82 ± 0.078 -4.86 ± 0.13 0.458 ± 0.066 74.97 40.64 2.58

FMMP2 0.55 ± 0.012 + 11.9 ± 0.56 0.403 ± 0.017 73.00 40.66 5.06

FMMP3 1.89 ± 0.010 +3.37 ± 0.54 0.505 ± 0.040 72.59 33.07 5.94

Microparticles properties including RY, EE, DL, particle size, zeta potential and PDI

A

t 10 IS

initial peptide amount {mg}

B

Tf TO

? >

K

M

55 »

Initial peptide amount (mg)

C

2.4

2.0

_ 1,6 a

N U

to

0,8 0.4 0.0

r "■] s r» [m -1-PDI

a,s

0,7

o,e

0,5 □

E

0,1 0,3 0,2

S 10 15

Initial peptide amount (mg)

Fig. 1. A — effect of initial peptide amount on EE (bar) and DL (line); B — RY (bar); C — Z-ave of particle size (bar) and PDI (line)

Particle Size {pm)

Fig. 2. Particle size distribution of FMMP1, FMMP2 and FMMP3, respectively

Wavenumbers (cm f) Fig. 3. FT-IR spectrums of FMDV peptide (FM), PLGA, FMMP1, FMMP2 and FMMP3

A

B

C

BLjSErciP

éjÊM

ISfPiZA''' ^

if: 'i ■ mm^' t Iti bVi&ttulr

fait |__| EHTifi.OOKV WD« OUrroi Signal A - SE! M»a=SQCQKX

Fig. 4. A

SEM image of FMMP1 microparticles; B — SEM image of FMMP2 microparticles; C — SEM image of FMMP3 microparticles

SEM -Analysis of Microparticles Microparticles synthesized using different amounts of peptides were analyzed morphologically by scanning electron microscopy (SEM). Obtained SEM images were shown in Fig. 4, A, B, C.

When the SEM images of the obtained microparticles are examined, it can be concluded that the microparticles are synthesized smooth/spherically and the size distributions of the particles are in a narrow range. Additionally, obtained SEM results were in agreements with Zeta-Sizer particle results.

In vitro Release of Microparticles Fig. 5 illustrates the in vitro release pattern of FMDV 40-60 peptide from microparticles prepared with different initial peptide amounts. Obtained release pattern shows that controlled release of the peptide is observed for 33 days from the microparticles. First two days initial burst release was observed than slow peptide release occurred from microparticles in the subsequent period. The last part of the pattern peptide release continuous release almost close to linear was observed after the 15 th days.

Time {days)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fig. 5. In vitro release profile of FMDV 40-60 peptide from microparticles in phosphate buffer, pH 7.4

REFERENCES

1. King D. J., Freimanis G. L., Orton R. J., Waters R. A., Haydon D. T, King D. P. Investigating intra-host and intra-herd sequence diversity of foot-and-mouth disease virus. Infect. Genet. Evolu. 2016, V. 44, P.286-292.

2. Mansuroglu B., Mustafaeva Z. Characterization of water-soluble conjugates of polyacrylic acid and antigenic peptide of FMDV by size exclusion chromatography with quadruple detection. Mat. Sci. Engin. C-Materials for Biological Applications. 2012, 32 (2), 112-118.

3. Özdemir Z. Ö., Karahan M., Karabulut E., Mustafaeva Z. Characterization of Foot-and-Mouth Disease Virus's Viral Peptides with LC-ESI-MS. J. Chem. Soc. Pakistan. 2010, 32 (4), 531-536.

4. Beck E., Feil G, Strohmaier K. The molecular basis of the antigenic variation of foot-and-mouth disease virus. EMBO J. 1983, 2 (4), 555.

5. Diaz-San Segundo F., Medina G. N, Stenfeldt C, Arzt J., de los Santos T. Foot-and-mouth

Poly(DL,lactic-co-glycolic acid) is a FDA approved and widely used copolymer for nano-micro particular delivery system and has special biodegradability and biocompatibility properties [29]. One of the most important properties of PLGA particles is improving biocompatibility and bioavailability of biologically active molecules such as peptides, drugs, proteins etc. [30]. In several studies, it has been shown that encapsulation of antigenic molecules into PLGA particles decreased their toxicity as well as enhancing their bioavailability [31-41].

In the present study, FMDV 4060 synthetic peptide loaded PLGA microparticles were succesfully synthesized and characterized. Single emulsion solvent evaporation methods was used for the production of microparticles with theree diferent (5; 10 and 15 mg) peptide amount. Additionally, to provide a more detailed explanation of the immunological effect of microparticles, we suggest performing further in vivo and in vitro studies on the cellular uptake mechanisms and immunological properties.

disease vaccines. Vet. Microbiol. 2016. doi: 10.1016/j.vetmic.2016.12.018.

6. Alkan M., Çokçaliçkan C., Bulut A. N., Arslan A., Uzunlu E, Gurcan i. S. Determination of the best vaccination age of calves in the presence of maternal antibodies to foot and mouth disease under natural conditions. Vaccine Rep. 2016,V. 6, P.44-49.

7. Mansuroglu B. Improving of biohybrid and biomimicking polymer-peptide conjugates: (Doctoral dissertation); Available from https://tez.yok.gov.tr/UlusalTezMerkezi/ 2007 (Thesis No:213516).

8. Zhang L., Zhang J., Chen H., Zhou J., Ding Y., Liu Y. Research in advance for FMD novel vaccines. Virol. J. 2011, 8 (1), 1.

9. Grubman M. J. New approaches to rapidly control foot-and-mouth disease outbreaks. Exp. R. Anti-infect. Ther. 2003, 1 (4), 579-586.

10. Rodriguez L. L., Gay C. G. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Exp. Rev. Vaccines. 2011, 10 (3), 377-387.

11. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Synthesis and characterization of canine parvovirus (CPV) VP2 W-7L-20 synthetic peptide for synthetic vaccine. Fresen Environ. Bull. 2014, 23 (2A), 558-566.

12. Arnon R. Synthetic peptides as the basis for vaccine design. Mol. Immunol. 1991, 28 (3), 209-215.

13. O'Hagan D. T., Singh M. Microparticles as vaccine adjuvants and delivery systems. Exp. Rev. Vaccines. 2003, 2 (2), 269-283.

14. Azmi F, Ahmad Fuaad A. A. H, Skwarczyns-ki M, Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Human Vaccines Immunotherapeut. 2014, 10 (3), 778-796.

15. Oyewumi M. O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Exp. Rev. Vaccines. 2010, 9 (9), 1095-1107.

16. Derman S., Mustafaeva Z. Particle size and zeta potential investigation of synthetic peptide-protein conjugates/Sentetik peptid-protein konjugatlarinin pargacik boyutu ve zeta potensiyel analizi. Turkish J. Biochem. 2015, 40 (4), 282-289.

17. Mansuroglu B., Derman S., Kizilbey K., Mustafaeva Z. Investigation of Protein and Polymer as a Carrier on Immune System. Intern. J. Nat. Engin. Sci. 2009, 3 (2), 32-35.

18. Derman S., Kizilbey K., Mansuroglu B., Mustafaeva Z. Poly (N-Vinyl-2-Pyrrolidone-co-Acrylic Acid)-Bovine Serum Albumin Complex Formation Studied by HPLC and UV/Vis Spectroscopy. Roman. Biotechnol. Lett. 2012, 17 (4), 7408.

19. Kabanov V. A. From synthetic polyelectrolytes to polymer-subunit vaccines. Pure Appl. Chem. 2004, 76 (9), 1659-1677.

20. Zaman M., Simerska P., Toth I. Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Current Drug Deliv. 2010, 7 (2), 118-124.

21. Kabanov V. A. Synthetic membrane active polyelectrolytes in design of artificial immunogens and vaccines. Macromolecular Symposia, 1986.

22. Topuzogullari M., Koc R. C., Isoglu S. D., Bagirova M., Mustafaeva A. Z., Elcicek S., Oztel O. N., Baydar S. Y., Ates S. C, Allahverdiyev A. M. Conjugation, characterization and toxicity of lipophosphoglycan-polyacrylic acid conjugate for vaccination against leishmaniasis. J. Biomed. Sci. 2013, 20 (1), 35.

23. Singh M., Chakrapani A., O'Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Exp. Rev. Vaccines. 2007, 6 (5), 797-808.

24. Derman S., Kizilbey K., Mustafaeva Z. Polymeric nanoparticles. Sigma J. Engin. Nat. Sci. 2013, V. 31, P. 109-122.

25. Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J. Nanomater. 2015, 16 (1), 318.

26. Arasoglu T., Derman S., Mansuroglu B. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods. Nanotechnology. 2015, 27 (2), 025103.

27.Arasoglu T., Mansuroglu B., Derman S., Gumus B., Kocyigit B., Acar T., Kocacaliskan I. Enhancement of Antifungal Activity of Juglone (5-Hydroxy-1, 4-naphthoquinone) Using a Poly (d, l-lactic-co-glycolic acid) (PLGA) Nanoparticle System. J. Agricult. Food Chem. 2016, 64 (38), 7087-7094.

28. Derman S., Mustafaeva Z., Abamor E. S., Bagirova M., Allahverdiyev A. Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J. Biomed. Sci. 2015, 22 (1), 89.

29. Sen G. P. Poly (DL-lactic-co-glycolic acid) microparticles and synthetic peptide drug conjugate for anti-cancer drug delivery (Master Thesis) Available from https://tez. yok.gov.tr/UlusalTezMerkezi/ 2009 (Thesis No: 255341).

30. Bala I., Hariharan S., Kumar M. R. PLGA nanoparticles in drug delivery: the state of the art. Crit. Rev.™ Therapeut. Drug Carrier Syst. 2004, 21 (5), 387-422.

31. Chong C. S., Cao M., Wong W. W., Fischer K. P., Addison W. R., Kwon G. S., Tyrrell D. L., Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J. Controll. Release. 2005, 102 (1), 85-99.

32. Dixit S., Singh S. R., Yilma A. N., Agee II R. D, Taha M., Dennis V. A. Poly (lactic acid)-poly (ethylene glycol) nanoparticles provide sustained delivery of a Chlamydia trachomatis recombinant MOMP peptide and potentiate systemic adaptive immune responses in mice. Nanomed.: Nanotechnol. Biol. Med. 2014, 10 (6), 1311-1321.

33. Fairley S. J., Singh S. R., Yilma A. N, Waffo A. B., Subbarayan P., Dixit S., Taha M. A., Cambridge C. D., Dennis V. A. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Intern. J. Nanomed. 2013, V. 8, P. 2085.

34. Ma W., Chen M., Kaushal S., McElroy M., Zhang Y., Ozkan C., Bouvet M., Kruse C., Grotjahn D., Ichim T. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Intern. J. Nanomed. 2012, V. 7, P. 1475.

35. Primard C., Poecheim J., Heuking S., Sublet E., Esmaeili F., Borchard G. Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol. Pharmaceut. 2013, 10 (8), 2996-3004.

36. Silva A., Rosalia R., Sazak A., Carstens M., Ossendorp F., Oostendorp J., Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8(+) T cell activation. Europ J. Pharmaceut. Biopharmaceut. 2013, 83 (3), 338-345.

37. Taha M. A., Singh S. R., Dennis V. A. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology. 2012, 23 (32), 325101.

38. Xiao X., Zeng X., Zhang X., Ma L., Liu X., Yu H, Mei L, Liu Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Intern. J. Nanomed. 2013, V. 8, P. 4553.

39. Pawar D., Mangal S., Goswami R., Jaganathan K. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Europ. J. Pharmaceut Biopharmaceut. 2013, 85 (3), 550-559.

40. Manish M., Rahi A., Kaur M., Bhatnagar R., Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLOS ONE. 2013, 8 (4), e61885.

41. Jaganathan K., Vyas S. P. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine. 2006, 24 (19), 4201-4211.

СИНТЕЗ I ХАРАКТЕРИСТИКА М1КРОЧАСТИНОК ПОЛЦМОЛОЧНО1-

КОГЛ1КОЛЕВО1) КИСЛОТИ, НАВАНТАЖЕНИХ СИНТЕТИЧНИМ ПЕПТИДОМ В1РУСУ ЯЩУРУ 40-60

З. Мустафаева

Йилдизський техшчний ушверситет, Стамбул, Туреччина

E-mail: zmustafaeva@yahoo.com

Метою дослвдження було синтезувати та оха-рактеризувати мшрочастинки полЦмолочно!-коглшолево! кислоти), навантажеш син-тетичним пептидом вiрусу ящуру 40-60. Для одержання мшрочастинок з трьома рiзними шлькостями пептиду (5; 10 i 15 мг) було використано метод одноемульсшного випаровування. Отриман мшрочастинки було детально охарактеризовано за допо-могою методiв визначення виходу реакцп, ефективноси шкапсулювання, навантажен-ня лшами, розмiру частинок, коеф^енту полщисперсносм та зета-потенщалу.

Ключовi слова: вiрус ящуру, мшрочастинки полЦмолочноькоглшолево! кислоти).

СИНТЕЗ И ХАРАКТЕРИСТИКА МИКРОЧАСТИЦ ПОЛИ(МОЛОЧНОЙ-

КОГЛИКОЛЕВОИ) КИСЛОТЫ, НАГРУЖЕННЫХ СИНТЕТИЧЕСКИМ

ПЕПТИДОМ ВИРУСА ЯЩУРА 40-60

З. Мустафаева

Йылдызский технический университет, Стамбул, Турция

E-mail: zmustafaeva@yahoo.com

Цель исследования — синтезировать и охарактеризовать синтетический пептид вируса ящура 40-60, нагруженный микрочастицами поли(молочной-когликолевой кислоты). Для получения микрочастиц с тремя различными количествами пептида (5; 10 и 15 мг) был использован метод одноэмульсионного испарения. Полученные микрочастицы были подробно охарактеризованы с помощью методов определения выхода реакции, эффективности инкапсулирования, загрузки лекарствами, розмера частичек, коэффициента полидисперсности и зета-потенциала.

Ключевые слова: вирус ящура, микрочастицы поли(молочной-когликолевой кислоты).

i Надоели баннеры? Вы всегда можете отключить рекламу.