Научная статья на тему 'Scientific evidence for walls fastening technologies of working trench by the special method «Slurry wall» for shallow subways’ stations'

Scientific evidence for walls fastening technologies of working trench by the special method «Slurry wall» for shallow subways’ stations Текст научной статьи по специальности «Строительство и архитектура»

CC BY
136
35
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
"СТіНА В ґРУНТі" / РОЗСТРіЛЬНЕ КРіПЛЕННЯ / НАПРУЖЕНО-ДЕФОРМОВАНИЙ СТАН / "SLURRY WALL" / НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ / "СТЕНА В ГРУНТЕ" / РАССТРЕЛЬНОЕ КРЕПЛЕНИЕ / STRUT RAIL FASTENING / STRESS-STRAIN STATE

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Borshchevskiy S. V., Petrenko V. D., Tiutkin O. L., Kulazhenko Ye Yu, Kulazhenko O. M.

Purpose. It’s necessary to carry out justification of fastening technology and the choice of the optimal variant, creating dependency diagrams of moving for idealized cases by means of automated methods of calculations. Methodology. To achieve this goal, the finite element solid models, which reflect the design of the working trench for the shallow subways’ stations, with four ways to fix the “slurry wall”, as well as a calculation and analysis of the stress-strain state of structures and fixtures calculated using the complex with using the finite element method (FEM) is built in the software package SCAD. Findings. The analysis of the stress-strain state and movements of various fundamental systems of soil nailing and comparing the results by displaying the calculations results of main and equivalent stresses, using the built-in postprocessors in software package SCAD. Namely, were identified extreme tensions arising in the wall and strut rail. It is built the tables and the resulting graph of behavior of the structural fastening condition; the parameters change of the surrounding array on the base of the research. It is possible to analyze and compare the operation of different constructions of slopes fastening of working trench by means of their help. Originality. In solving this problem have been analyzed and studied the behavior of the structure fastening the «slurry wall», and its stress-strain state, the location and the fastening areas that need further elaboration, study and introduction of measures to strengthen the construction of fences and auxiliary fixing elements, presented with metal strut rail. Practical value. In the era of highly advanced building technologies in the construction of underground facilities with using the special method of “slurry wall” the question arises about the quick selection of optimal parameters, elements and methods of securing its walls from excessive strain and avoidance of displacement to the calculation of possible combinations of permanent loads from soil in the construction of the working trench.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Scientific evidence for walls fastening technologies of working trench by the special method «Slurry wall» for shallow subways’ stations»

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

ТРАНСПОРТНЕ БУД1ВНИЦТВО

UDC 624.191.21:624.137.4

S. V. BORSHCHEVSKIY1*, V. D. PETRENKO2*, O. L. TIUTKIN3*, YE. YU. KULAZHENKO4*, O. M. KULAZHENKO5*

1 Dep. «Construction of Mines and Underground Structures», Donetsk National Technical University, Artem St., 58, room 414, Donetsk, Ukraine, 83001, tel. +38 (062) 301 03 23, e-mail borshevskiy@gmail.com, ORCID 0000-0002-7194-8785 2*Dep. «Tunnels, Bases and Foundations», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (050) 708 50 69, e-mail petrenko1937@mail.ru, ORCID 30*000-0002-5902-6155

3*Dep. «Tunnels, Bases and Foundations», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (066) 290 45 18, e-mail tutkin@mail.ru, (ORCID 0000-0003-4921-4758

4*Dep. «Tunnels, Bases and Foundations», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (098) 768 49 21, e-mail jaksson777@rambler.ru, 5O*RCID 0000-0002-4529-7384

5*Dep. «Tunnels, Bases and Foundations», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (096) 992 15 81, e-mail murzilka891@mail.ru, ORCID 0000-0002-6077-1689

SCIENTIFIC EVIDENCE FOR WALLS FASTENING TECHNOLOGIES OF WORKING TRENCH BY THE SPECIAL METHOD «SLURRY WALL» FOR SHALLOW SUBWAYS' STATIONS

Purpose. It's necessary to carry out justification of fastening technology and the choice of the optimal variant, creating dependency diagrams of moving for idealized cases by means of automated methods of calculations. Methodology. To achieve this goal, the finite element solid models, which reflect the design of the working trench for the shallow subways' stations, with four ways to fix the "slurry wall", as well as a calculation and analysis of the stress-strain state of structures and fixtures calculated using the complex with using the finite element method (FEM) is built in the software package SCAD. Findings. The analysis of the stress-strain state and movements of various fundamental systems of soil nailing and comparing the results by displaying the calculations results of main and equivalent stresses, using the built-in postprocessors in software package SCAD. Namely, were identified extreme tensions arising in the wall and strut rail. It is built the tables and the resulting graph of behavior of the structural fastening condition; the parameters change of the surrounding array on the base of the research. It is possible to analyze and compare the operation of different constructions of slopes fastening of working trench by means of their help. Originality. In solving this problem have been analyzed and studied the behavior of the structure fastening the «slurry wall», and its stress-strain state, the location and the fastening areas that need further elaboration, study and introduction of measures to strengthen the construction of fences and auxiliary fixing elements, presented with metal strut rail. Practical value. In the era of highly advanced building technologies in the construction of underground facilities with using the special method of "slurry wall" the question arises about the quick selection of optimal parameters, elements and methods of securing its walls from excessive strain and avoidance of displacement to the calculation of possible combinations of permanent loads from soil in the construction of the working trench.

Key words: "slurry wall"; strut rail fastening; stress-strain state

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

Introduction

Owing to the dynamic growth of the population in the cities and a tendency of the perspective transport infrastructure solution with using of underground space, there is a task in the solution of a number of questions, belonging to area of underground construction. The building of the underground facilities, which is being built by the open method, requires a detailed design and protection from excessive strain of fastening construction, and daily surface around the working trench. The progressive method of fixing of the working trench slopes is the special method of a construction "slurry wall".

This method of the construction of working trench has several disadvantages, namely: the emergence of excessive deformations and displacements in the system of wall-array local occurrence of extreme stress [2].

The question is to strengthen the design on the finite element model, which is a prototype of the working trench of the shallow subway's station using the additional fastening by means of strut rail.

Purpose

Numerical justify fixing technology and selection of optimal variant, creating graphs comparing of fastening for idealized cases and finding methods to prevent undue strain and stress in the wall.

Methodology

It is build the finite element models that reflect the working trench for the shallow subway's station, with four ways of fastening "slurry wall" for achieve this task, and also the calculation and analysis of the stress-strain state structures and fastening elements by means of FEM complex calculation is conducted.

Findings

The analysis of the stress-strain state and movement of various fundamental soil nailing system and comparing of the given results. It is built the tables and resulting graphs behavior and state of construction fasteners, change its settings and parameters surrounding the array on the basis of researches.

Originality and practical value

In solving task in hand was analyzed and investigated the behavior of fixing construction and its

doi 10.15802/stp2014/33740

stress-strain state, found the space and plots of fixing construction which require further elaboration, investigation and resolution measures to strengthen the construction and consolidation items.

During the construction of underground facilities with using a special method "slurry wall" the question that has to be answered is in a fast selection of optimal parameters, elements and ways to consolidate its walls from excessive strain, stabilize the soil mass around working trench, minimizing the value of its deformation and prevent landslides with the expectation gravity load in the construction of working trench.

Developments of finite element model for calculation the dimensional mountings of "slurry wall".

For calculation the stress-strain state of the fixing construction of the working trench by means of strut rail is used finite-element model which is a section of working trench of length 7 m. The square size of the finite element is taken 0.5 m.

As it is considered the part of the construction, which has the extensive sizes, it is necessary to impose the relocation ban of the appropriate sides: the relocation prohibition along the global axes X, Y, Z, for a basis, and in X, Y directions, on extreme edges, that lying in the YoZ and XoZ planes accordingly [4].

For strut rail fixing two options are selected:

1. Alternative mounting by means of help of one row strut rail, as shown in Fig. 1, and in the form of a pipe with a diameter of 1 000 mm and thick wall of 10 mm;

2. Option fixing with two rows of strut rail, as it is shown in Fig. 1b, in the form of pipes with a diameter of 1 000 mm and a wall thickness of 10 mm;

Strut rail in the submitted models are represented as finite element of square section. For faithful calculation results by means of VC SCAD, it is given elastic modulus, principal moment of inertia section area of pipe and composite unit weight in accordance with section [8, 13].

It is developed models and calculation of a homogeneous soil mass for a more detailed analysis and idealized stress-strain state of fixing construction [6, 7]. It allowed reflecting the real action of one given type of the soil on construction of a barrier.

The calculation was conducted with using parameters that numerically reflect the properties of the material and ground mounting sections and values through their elastic modules, the proportion of materials and Poisson's ratio for each type of rigidity [3, 5].

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2014, № 6 (54)

Fig. 1. The finite element model with additional fastening "slurry wall" by means of: a - one row of strut rail; b - two rows of strut rail

Fig. 2. The rigidities scheme of the finite element model during fixing the walls attaching of the working trenches:

a - by means of the one row of strut rails; b - by means of the two rows of strut rails

The soils surrounding the array presented in a variety of similar species, such as sandy, loam, clay and sand.

The diagram (Fig. 2, a, b) shows the placement of designated models of rigidity, which correspond to the actual placement of fixing construction in the working trench with one and two rows of strut rails, respectively.

These numerical characteristics of the soil and the materials fastening elements are summarized in the Table 1.

Table 1

Numerical parameters of the material models

Name of the element Elasticity modulus Е, MPa Relative density у, kN/m3 Poisson's ratio ц

Soils

Sandy loam 15 20.00 0.3

Loam 25 20.00 0.3

Clay 30 20.00 0.3

Sand 75 20.00 0.3

Fastenings

Ferroconcrete Strut rails

32.5-103 210-103

24.50 77.00

0.2 0.3

For further calculation of construction for strength, that carried on concrete that is used to crack the maximum normal stresses arising in the "slurry wall" along the global Z-axis [10, 14].

The obtaining of normal stresses allows considering multi-axial stress in elements of model and more precisely to clarify behavior of construction in case of interaction it with the environmental array executions and caused by its loadings [6].

It is the initial data for calculating finite -element models of attachment.

The calculation for working trench, slopes consolidation of which are presented in the form of "slurry wall" attached to one and two tiers of strut rails. Each of these models is the section of working trench length of 7 m [11].

For comparing four finite-element models of a special method of working trench slopes fixing by means of "slurry wall" without any additional fixing with the help of strut rails are constructed. The rigidness is appropriated to these models, the similarly provided in Table 1, except strut rail fixing. This model allows to compare system behavior of

a

b

a

b

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

fixing-array and to define points the application of points of additional coupling in the form of strut rails. The following number 0-1, 0-2, 0-3, and 0-4 for environmental arrays in the form of sandy loam, loam, clay and sand respectively is assigned to these models.

It is analyses the stress-strain state of working trench mounting with the help of "slurry wall" without additional fasteners.

The software package SCAD Office 11.5 was used to calculate the construction of stress-strain state. The scheme of the distribution of normal stresses along the Z-axis, available in wall and it is visible section of their maximum values, and these values are extreme at 10 m from the top "slurry wall" are given on Fig. 3. Data retrieved of tensile stresses in concrete allow picking up reinforcement for the given construction.

Я

i

Fig. 3. The scheme of the voltages in the "slurry wall" without the additional fastening.

By means of results it is revealed the trouble spots which need the additional fixing and gains for introduction into service. The maximum expanding and compression stresses which arose in construction when using the environmental array in the form of sandy loam, loam, clay and sand are defined. These data allow calculating fixing construction reinforcements.

In the analysis of horizontal relocation it was revealed that the maximum relocation of "slurry wall", are watched at the level of top of a retaining wall. All these data are provided in table 2.

doi 10.15802/stp2014/33740

Table 2

Stress and displacement models without additional fastening

No. model Soil Tension NZ, kN/cm2 Displacement, cm

+ -

0-1 Loam sandy 0.61 0.41 24.10

0-2 Clay loam 0.54 0.38 16.00

0-3 Clay 0.53 0.38 14.42

0-4 Sand 0.31 0.26 6.75

During the study the calculation of the finite-element models mount slopes of the working trench with using a special method "slurry wall" without any additional mounting was conducted. The resulting diagrams clearly reflect the processes in the surrounding array and the "slurry wall" [10, 14].

Considering the data provided in Table 2 it is possible to draw a conclusion that "slurry wall" has the considerable margin of safety, but this system doesn't satisfy a boundary condition of horizontal relocation of the wall top in case of model with loam makes the maximum value of 24,10 cm. So it is necessary to enter additional systems of fixing in the form of executions of the same kind at the level of 1, 5 m from wall top. It will allow compensating relocation, arisen in system without additional fixing [10].

It is analysis of the stress-strain state of working trench mounting with "slurry wall" with additional support in the form of the one row of strut rails.

In models that have been developed and calculated using the finite element method with the introduction of a number of strut rail clearly displayed behavior change "slurry wall". These changes consist in reducing the horizontal movement of the wall with the array of local and extra stress at the site of attachment to the strut rail fence [12, 15].

The diagram (Fig. 4) shows movement isofield of fastening systems along the X-axis of the global maximum values of displacement and stress: for walls - at the bottom of the working trench and third of the height of the wall from the bottom of the working trench, respectively; and contiguity strut rail at the "slurry wall". The results are summarized in Table 3.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

Fig. 4. The scheme of movements along the global X-axis

According to the attained results it is shown that the design has significant reserves of strength for the first group of limiting states. However, it does not satisfy the condition of horizontal displacement (second boundary condition) in different types of soils.

The largest equivalent stress and horizontal displacement observed in the variant with the surrounding array, which is presented in a sandy loam and smallest values of these parameters are observed in the array, in the form of sand.

Table 3

The stresses and displacement in models with additional fixing with one row of strut rails

No. model Soil Tension NZ, kN/cm2 Displacement, cm

+ -

1-1 Loam sandy 0.56 0.39 24.03

1-2 Clay loam 0.49 0.36 16.53

1-3 Clay 0.47 0.35 15.06

1-4 Sand 0.26 0.24 7.22

By means of results it is revealed trouble spots which need additionally fixing and gains for introduction into service. The maximum expanding and compression stresses which arose in construction

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

when using an environmental array in the form of sandy loam, loam, clay and sand are defined. These data allow calculating the fixing construction of reinforcements.

It can be concluded that the introduction of additional spacer model led to reduction of stress in concrete construction "slurry wall" and reduce the horizontal displacement at the top of the working trench. However, at the bottom of the pit horizontal displacement values increased significantly as a result of "slurry wall" "rotation" around the strut rail. In this case it is advisable to introduce an additional row of strut rail vertically, to reduce the expression of this phenomenon.

It is analysis of the stress-strain state of working trench mounting with "slurry wall" with additional support in the form of two rows of strut rails.

In the above models for analysis and comparison have been introduced additional second tier of strut rails. This event allowed significantly reduces the horizontal displacement system mounting and reduce its domestic efforts [14, 16]. The results of models calculation with the help of finite element method are shown in Table 4.

Table 4

Stress and displacement models with additional fastening with two rows of strut rails

No. model Soil Tension NZ, kN/cm2 Displacement, cm

+ -

2-1 Loam sandy 0.24 0.54 20.90

2-2 Clay loam 0.27 0.41 13.26

2-3 Clay 0.27 0.38 11.60

2-4 Sand 0.19 0.23 5.66

These results show that the introduction of the additional second row of strut rails allowed reducing the horizontal displacements up to 25% compared to the variants of working trench mounting slopes with using the optional mounting as one row of strut rail. However, there were local extreme tensions at the site of attachment of the second strut rail row. Following to this, efforts for strengthening the places of strut rail attaching point enter the additional reinforcement.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2014, № 6 (54)

Conclusions

By results of these conducted researches the analysis of change of the intense deformed status of construction of slopes fixing is made. The solution of these tasks was shown that it didn't lead to introduction of one vertical row of strut rails to significant improvement of indexes and led to the origin of additional tension and extreme relocation at the level of excavation bottom. It shows that with big depths of working trenches it is necessary to enter additional vertical rows of strut rails in the course of carrying out the soil development for shallow subways' stations and other underground engineering constructions [1].

According to the movements it is built the dependency diagrams of elastic modulus and horizontal displacements wall-soil system for each case of working trench fixing. The diagrams are built for extreme values of displacements at the excavation bottom (except option without additional fasteners) and shown in Fig. 5. The data of relocation for a graphics of fixing option of the working trench without strut rails are used for the level of working trench top [16].

This diagram shows efficiency of additional fixing introduction of two vertical rows of strut rails and the changing of deformations value with change of elastic modulus of an environmental array.

The graphs of functions are represented as power function and performance with reliability approximation equal to about 1, which is confirming the existence of power dependence of the elasticity modulus and movement in the system [9].

According to the given results of calculations it is possible to make the following conclusions.

The method of introducing of the additional rows of strut rails in the fastening construction has been achieved the reduction of the horizontal displacement at the excavation bottom. And to reduce the value of the main stress concrete construction "slurry wall", which is allowing arguing about the effectiveness of using this method in any geological conditions, presented by soils with unstable grounds [7].

Fig. 5. The dependence graph of the horizontal displacements of the array from the elasticity modulus

LIST OF REFERENCE LINKS

1. Баклашов, И. В. Механика подземных сооружений и конструкции крепей / И. В. Баклашов, Б. А. Картозия. - Москва : Недра, 1984. - 415 с.

2. Изменение напряженно-деформированного состояния грунтов при устройстве глубоких выемок / Н. В. Зуевская, С. А. Дворник, В. Е. Гу-башова, Ю. В. Волык // Вюн. Дншропетр. нац. ун-ту залiзн. трансп. iм. акад. В. Лазаряна. -Дншропетровськ, 2011. - Вип. 38. - С. 142-147.

3. Колесников, В. С. Возведение подземных сооружений методом «стена в грунте». Технология и средства механизации : учеб. пособие /

B. С. Колесников, В. В. Стрельникова. - Волгоград : ВолГУ, 1999. - 144 с.

4. Купрш, В. П. Моделювання напружено-деформованого стану кршлення глибокого котловану / В. П. Купрш, Д. В. Тютькш // Мости та тунелт теорiя, дослвдження, практика : зб. наук. пр. - Дншропетровськ, 2012. - Вип. 3. -

C. 89-94.

5. НЫфорова, Т. Д. Дослвдження напружено -деформованого стану залiзобетонних констру-кцiй заглиблених будiвель з урахуванням 1х взаемодп з грунтовим масивом / Т. Д. НЫфо-рова // Вюн. Приднiпр. держ. акад. буд-ва та архгг. - Днiпропетровськ, 2013. - Вип. 1-2. -С. 19-25.

6. Основы моделирования при решении задач горной геомеханики / С. Ф. Алексеенко, А. Г. За-болотный, Л. А. Штанько [и др.]. - Киев : Техника, 1996. - 173 с.

7. Петрова, А. Е. Оценка эффективности ограждений котлованов / А. Е. Петрова, К. Э. Шерстяных // XXXVIII Неделя науки СПБГПУ : материалы междун. науч.-практ. конф. -Санкт-Петербург, 2010. - Ч. I. - С. 254-255.

8. Рикардс, Р. Б. Метод конечных элементов в теории оболочек и пластин / Р. Б. Рикардс. -Рига : Зинатне, 1988. - 284 с.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету з^зничного транспорту, 2014, № 6 (54)

9. Розробка та впровадження нових ресурсозберь гаючих i техногенно-безпечних технологш бу-дiвництва метрополггешв та тунелiв в Украш / В. I. Петренко, С. М. Лiхман, В. В. Яншн [та ш.] // Колега. - 2012. - № 3. - С. 4-46.

10. Тютькш, О. Л. Основи енергетичного шдходу до аналiзу напружено-деформованого стану системи «кршлення - масив» / О. Л. Тютькш // Вюн. Дншропетр. нац. ун-ту залiзн. трансп. ím. акад. В. Лазаряна. - Дшпропетровськ, 2009. -Вип. 26. - С. 141-146.

11. Фролов, Ю. С. Метрополитены на линиях мелкого заложения. Новая концепция строительства / Ю. С. Фролов, Ю. Е. Крук. - Москва : ТИМР, 1994. - 202 с.

12. A design method for slurry trench wall stability in sandy ground based on the elasto-plastic FEM / P. Oblozinski, K. Ugai, M. Katagiri [et al.] // Computers and Geotechnics. - 2001. - № 28 (2). -P. 145-159.

13. Chew, S. H. Three-dimensional Finite Element Analysis of a Strutted Excavation / S. H. Chew, K. Y. Yong, A. Y. K. Lim. - Computer Methods and Advances in Geomechanics. - 1997. - Vol. 3. - Р. 1915-1920.

14. Hu, X. Research on particle flow approach for modeling face failure mechanism in slurry shield tunneling under complex ground conditions / X. Hu, Z. Zhang // Chinese J. of Rock Mechanics and Engineering. - 2013. - Vol. 32. - Iss. 11. -Р. 2258-2267.

15. Konstantakos, D. C. Measured Performance of Slurry Walls / D. C. Konstantakos, M. S. Thesis. -Cambridge : Massachusetts Institute of Technology, 2000. - 361 p.

16. Safety management in tunnel construction: Case study of Wuhan metro construction in China / L. Ding, L. Zhang, X. Wu [et al.] // Electronic J. of Geotechnical Engineering. - 2014. - Vol. 62. -P. 8-15. doi: 10.1016/j.ssci.2013.07.021.

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

ТРАНСПОРТНЕ БУД1ВНИЦТВО

С. В. БОРЩЕВСКИЙ1*, В. Д. ПЕТРЕНКО2*, О. Л. ТЮТЬКИН3*, Е. Ю. КУЛАЖЕНКО4*, Е. Н. КУЛАЖЕНКО5*

1 Каф. «Строительство шахт и подземных сооружений», Донецкий национальный технический университет, ул. Артема, д. 58, к. 414, Донецк, Украина, 83001, тел. +38 (062) 301 03 23, эл. почта borshevskiy@gmail.com, (ORCID 0000-0002-7194-8785

2*Каф. «Тоннели, основания и фундаменты», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (050) 708 50 69, эл. почта petrenko1937@mail.ru, ORCID 0000-0002-5902-6155

3* Каф. «Тоннели, основания и фундаменты», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, +38 (066) 290 45 18, эл. почта: tutkin@mail.ru. ORCID 0000-0003-4921-4758

4*Каф. «Тоннели, основания и фундаменты», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (098) 768 49 21, эл. почта jaksson777@rambler.ru, ORCID 0000-0002-4529-7384

5*Каф. «Тоннели, основания и фундаменты», Днепропетровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днепропетровск, Украина, 49010, тел. +38 (096) 992 15 81, эл. почта murzilka891@mail.ru, ORCID 0000-0002-6077-1689

НАУЧНОЕ ОБОСНОВАНИЕ ТЕХНОЛОГИЙ КРЕПЛЕНИЯ СТЕН КОТЛОВАНОВ СПЕЦИАЛЬНЫМ СПОСОБОМ «СТЕНА В ГРУНТЕ» ДЛЯ СТАНЦИЙ МЕТРОПОЛИТЕНОВ МЕЛКОГО ЗАЛОЖЕНИЯ

Цель. В работе проведено обоснование применения технологий крепления и выбор оптимального варианта, создания графиков зависимостей перемещения для идеализированных случаев при помощи автоматизированных методов расчетов. Методика. Для достижения поставленной цели в программном комплексе SCAD построены конечно-элементные объемные модели, которые отображают конструкцию котлована для станций метрополитенов мелкого заложения, с четырьмя способами закрепления «стены в грунте». Также произведен расчет и анализ напряжённо-деформированного состояния конструкций и элементов крепления с помощью расчетного комплекса с использованием метода конечных элементов (МКЭ). Результаты. При помощи отображения результатов расчетов главных и эквивалентных напряжений, используя встроенные постпроцессоры в программном комплексе SCAD, проведен анализ напряженно-деформированного состояния и перемещений различных принципиальных систем крепление-грунт и сравнение полученных результатов. А именно, были определены экстремальные напряжения, возникшие в стене и расстрелах. На основе исследований построены таблицы и результирующие графики поведения состояния конструкции крепления, изменения параметров окружающего массива. С их помощью можно анализировать и сравнивать работу разных конструкций укрепления откосов котлованов. Научная новизна. При решении данной задачи было проанализировано и исследовано поведение конструкции крепления «стены в грунте» и ее напряженно-деформированного состояния. Определены места и участки конструкций крепления, которые нуждаются в дальнейшей детальной разработке, изучении и введении мероприятий для укрепления конструкции ограждения и вспомогательных элементов закрепления, представленых металлическими расстрелами. Практическая значимость. В эпоху высокопрогрессивных технологий строительства при сооружении подземных объектов с использованием специального способа «стена в грунте» возникает вопрос быстрого подбора оптимальных параметров элементов и способов укрепления её стен от чрезмерных деформаций. Также стабилизации грунтового массива вокруг котлована, минимизировав значения его деформации и избегания сдвигов с расчетом возможных комбинаций постоянных нагрузок от грунтов при сооружении котлована. Ключевые слова: «стена в грунте»; расстрельное крепление; напряженно-деформированное состояние

Наука та прогрес транспорту. Вкник Дншропетровського нацюнального ушверситету залiзничного транспорту, 2014, № 6 (54)

С. В. БОРЩЕВСЬКИЙ1*, В. Д. ПЕТРЕНКО2*, О. Л. ТЮТЬК1Н3*, е. Ю. КУЛАЖЕНКО4*,

0. М. КУЛАЖЕНКО5*

1 Каф. «Будшництво шахт i тдземних споруд», Донецький нацюнальний технiчний ун1верситет,

вул. Артема, д. 58, к. 414, Донецьк, Украша, 83001, тел. +38 (062) 301 03 23, ел. пошта borshevskiy@gmail.com,

ORCID 0000-0002-7194-8785

2*Каф. «Тунелi, основи та фундаменти», Днiпропетровський нацiональний ушверситет залiзничного транспорту iменi академiка В. Лазаряна, вул. Лазаряна,2, Днiпропетровськ, Украша, 49010, тел. +38 (050) 708 50 69, ел. пошта petrenko1937@mail.ru, ORCID 0000-0002-5902-6155

3*Каф. «Тунелi, основи та фундаменти», Дншропетровський нацiональний уншерситет залiзничного транспорту iменi академiка В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел. +38 (066) 290 45 18, ел. пошта tutkin@mail.ru, ORCID 0000-0003-4921-4758

4*Каф. «Тунел^ основи та фундаменти», Дтпропетровський нацюнальний уншерситет залiзничного транспорту iменi академжа В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел. +38 (098) 768 49 21, ел. пошта jaksson777@rambler.ru, ORCID 0000-0002-4529-7384

5*Каф. «Тунел^ основи та фундаменти», Дтпропетровський нацюнальний утверситет залiзничного транспорту iменi академiка В. Лазаряна, вул. Лазаряна, 2, Дншропетровськ, Украша, 49010, тел. +38 (096) 992 15 81, ел. пошта murzilka891@mail.ru, ORCID 0000-0002-6077-1689

НАУКОВЕ ОБГРУНТУВАННЯ ТЕХНОЛОГ1Й КР1ПЛЕННЯ СТ1Н КОТЛОВАН1В СПЕЦ1АЛЬНИМ СПОСОБОМ «СТ1НА В ГРУНТ1» ДЛЯ СТАНЦ1Й МЕТРОПОЛ1ТЕНУ М1ЛКОГО ЗАКЛАДЕННЯ

Мета. В роботi проведено обгрунтування застосування технологiй крiплення та вибiр оптимального ва-рiанту, створення графЫв подбору крiплення для iдеалiзованих випадк1в за допомогою сучасних автомати-зованих методiв розрахунку. Методика. Для досягнення поставлено! задачi в програмному комплексi SCAD побудовано скiнченно-елементнi об'емш моделi, як1 вiдображають конструкцш котловану для станци мет-ропол1тену мшкого закладення, з двома рiзними способами закршлення «стiни в грунтi». Також проведено розрахунок та аналiз напружено-деформованого стану конструкцiй та елементiв кршлення за допомогою розрахункового комплексу з використанням методу ск1нченних елементiв (МСЕ). Результати. За допомогою вщображення результата розрахунк1в головних та екывалентних напружень, використовуючи вбудова-нi постпроцесори в програмному комплекс SCAD, проведено aнaлiз напружено-деформованого стану та перемщень рiзних принципових систем крiплення-грунт i порiвняння отриманих результaтiв. А саме, було визначено екстремальш напруження, яш виникли в стiнi та розстршах. На основi дослвджень побудовaнi таблиц та результуючi грaфiки поведiнки та стану конструкцп крiплення, змiни його пaрaметрiв та параме-трiв оточуючого масиву. За !х допомогою можна анал1зувати та порiвнювaти роботу рiзних конструкцiй за-крiплення вiдкосiв котловашв. Наукова новизна. При вирiшеннi дано! зaдaчi було проaнaлiзовaно та досль джено поведiнку конструкцií крiплення «стши в грунтi» та ii напружено-деформованого стану. Виявлеш мiсця та дмнки конструкцiй крiплення, як1 потребують подальшо! детально! розробки, досл1дження та ви-рiшення зaходiв iз укрiплення конструкцп огородження та додаткових елементiв закршлення, яш представ-ленi металевими розстршами. Практична значимiсть. В епоху високорозвинених технологш будiвництвa при спорудженнi шдземних об'eктiв iз використанням спецiaльного способу «стша в Iрунтi» постае питання швидкого пiдбору оптимальних пaрaметрiв елеменпв та способiв для зaкрiплення його стш ввд нaдмiрних деформaцiй. Також стабшзацп грунтового масиву навколо котловану, мiнiмiзувaвши значення його дефор-мацш та зaпобiгaнню зсувiв, з розрахунком можливих комбiнaцiй постiйного навантаження ввд Iрунтiв при спорудженнi котловану станци.

Ключовi слова: «стша в грунп»; розстршьне крiплення; напружено-деформований стан

REFERENCES

1. Baklashov I.V., Kartoziya B.A. Mekhanika podzemnykh sooruzheniy i konstruktsii krepey [Mechanics of underground constructions and supports design]. Moscow, Nedra Publ., 1984. 415 p.

2. Zuyevskaya N.V., Dvornik S.A., Gubashova V.Ye., Volyk Yu.V. Izmeneniye napryazhenno-deformiro-vannogo sostoyanya gruntov pri ustroystve glubokikh vyyemok [The change of soils stress-stain state at operation of deep excavation]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznycnoho transportu imeni

Наука та прогрес транспорту. Вкник Дншропетровського нащонального ушверситету залiзничного транспорту, 2014, № 6 (54)

akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2011, issue 38, pp. 142-147.

3. Kolesnikov V.S., Strelnikova V.V. Vozvedeniye podzemnyh sooruzheniy metodom «stena v grunte». Tekhnologiya i sredstva mekanizatsiy [Building of underground constructions by the way of «slurry wall». Technology and means of mechanization]. Volgograd, VolGU Publ., 1999. 144 p.

4. Kupriy V.P., Tiutkin D.V. Modeliuvannia napruzheno-deformovanoho stanu kriplennia hlybokoho kotlovanu [Modeling of stress-strain state of mount deep ditch]. Mosty ta tuneli: teoriia, doslidzhennia, praktyka [Bridges & tunnels: theory, research, practice]. Dnipropetrovsk, 2012, issue 3, pp. 89-94.

5. Nikiforova T.D. Doslidzhennia napruzheno-deformovanoho stanu zalizobetonnykh konstruktsiy budivel z urakhuvanniam yikh vzaiemodiyi z hruntovym masyvom [The stress-strain state investigation of reinforce-concrete structures of the earth sheltered building interacting with soil mass]. Visnyk Prydniprovskoyi derz-havnoyi academii budivnytstva ta arkhitektury [Bulletin of Prydniprovsk State Academy of Civil Engineering and Architecture], 2013, issue 1-2, pp. 19-25.

6. Alekseyenko S.F., Zabolotnyy A.G., Shtanko L.A. Osnovy modelirovaniya pry reshenii zadach geomekhaniki [The basis of modeling in solving problems of Geomechanics]. Kyiv, Tekhnika Publ., 1996. 173 p.

7. Petrova A.Ye., Sherstyanykh K.Ye. Otsenka effektivnosti ograzhdeniy kotlovanov [Assessment of efficiency fencing of pits]. XXXVIII Nedelya nauky Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo univer-siteta: materialy mezhdunarodnoy Nauchno-prakticheskoy konferentsiy. Ch. I. [XXXVIII week of science St. in Petersburg State Polytechnic University: materials of the Int. Scientific-Practical Conf. Part I]. Saint Petersburg, 2010, pp. 254-255.

8. Rikards R.B. Metod konechnyh elementov v teorii obolochek i plastin [Finite-element method in the theory of shells and plates]. Riga, Zinatne Publ., 1988. 284 p.

9. Petrenko V.I., Likhman S.M., Yanikin V.V. Rozrobka ta vprovadzhennia novykh resursozberihaiuchykh i tekhnohenno-bezpechnykh tekhnolohii budivnytstva metropoliteniv ta tuneliv [Development and implementation of new resources saving and technogenic-safety buildings technology of subways and tunnels in Ukraine]. Kolega - Colleague, 2012, no. 3, pp. 4-46.

10. Tiutkin O.L. Osnovy enerhetychnoho pidkhodu do analizu napruzheno-deformovanoho stanu systemy «kriplennia - masyv» [Basics energetic approach to the analysis of the stress-strain state of the "mount - array"]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznycnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2009, issue 26, pp. 141-146.

11. Frolov Yu.S., Kruk Yu.Ye. Metropoliteny na liniyakh melkogo zalozheniya. Novaya kontseptsiya stroitelstva [Subways lines shallow. New construction concept]. Moscow, TIMR Publ., 1994. 204 p.

12. Oblozinski P.A, Ugai K., Katagiri M., Saitoh K., Ishii T., Masuda T., Kuwabara K. A design method for slurry trench wall stability in sandy ground based on the elasto-plastic FEM. Computers and Geotechnics, 2001, no. 28 (2), pp. 145-159. doi: 10.1016/j.ssci.2013.07.021.

13. Chew S.H., Yong K.Y., Lim A.Y. Three-dimensional Finite Element Analysis of a Strutted Excavation. Computer Methods and Advances in Geomechanics, 1997, vol. 3, pp. 1915-1920.

14. Hu X., Zhang Z. Research on particle flow approach for modeling face failure mechanism in slurry shield tunneling under complex ground conditions. Chinese Journal of Rock Mechanics and Engineering, 2013, vol. 32, issue 11, pp. 2258-2267.

15. Konstantakos D.C., Thesis M.S. Measured Performance of Slurry Walls. Cambridge, Institute of Technology Publ., 2000. 361 p.

16. Ding L., Zhang L., Wu X, Skibniewski M.J., Qunzhou Y. Safety management in tunnel construction: Case study of Wuhan metro construction in China. Electronic Journal of Geotechnical Engineering, 2014, vol. 62, pp. 8-15. doi: 10.1016/j.ssci.2013.07.021.

Prof. M. M. Biliaiev, D. Sc. (Tech.); Prof. A. Ye. Roienko, D. Sc. (Tech.) recommended this article to

be published

Received: Aug. 20, 2014 Accepted: Oct. 14, 2014

i Надоели баннеры? Вы всегда можете отключить рекламу.