Научная статья на тему 'Результаты вычислительного эксперимента по проектированию параметров геоэкосистемы при сбросе сточных вод газоперерабатывающей промышленности'

Результаты вычислительного эксперимента по проектированию параметров геоэкосистемы при сбросе сточных вод газоперерабатывающей промышленности Текст научной статьи по специальности «Математика»

CC BY
93
23
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Гамм Т. А., Платонов В. А., Гамм А. А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Результаты вычислительного эксперимента по проектированию параметров геоэкосистемы при сбросе сточных вод газоперерабатывающей промышленности»

Гамм Т.А., Платонов В.А., Гамм А.А.

Оренбургский государственный университет

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА ПО ПРОЕКТИРОВАНИЮ ПАРАМЕТРОВ ГЕОЭКОСИСТЕМЫ ПРИ СБРОСЕ СТОЧНЫХ ВОД ГАЗОПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

В работе представлены основные принципы и методы исследований, математические и графические модели и разработанные программные средства, которые позволяют вести проектирование геоэкосистем с заданными свойствами, рассчитывать экологические риски.

Любое техническое сооружение, находящееся на конкретной территории, взаимодействует с природой настолько тесно, что для изучения этого взаимодействия совокупный комплекс природной среды и ее техническое насыщение необходимо рассматривать совместно, как единую систему, которую определяют как природно-техническую систему или ПТС [1]. Вполне естественно ожидать, что это образование будет непременно оказывать некое влияние на природные системы в силу того, что оно всесторонне использует природную среду - от извлечения из неё компонентов до размещения отходов. Однако, чтобы понять и оценить возможность размещения ПТС в том или ином регионе и утилизацию в ней отходов с тем, чтобы защитить окружающую среду от их негативного воздействия, необходимо понять процессы, протекающие в ПТС, особенно в той ее подсистеме, которая будет непосредственным участником утилизации отходов.

Экологические проблемы, возникающие при утилизации сточных вод в геоэкосистемах, связаны, чаще всего, с потерей качества самой геоэкосистемы. Экологические риски в ПТС связаны с внутренними характеристиками системы, с воздействием внешних факторов техногенеза. Теоретическое обоснование воздействия техногенеза на природный ландшафт дано в работе И.И. Мазура, О.И. Молдаванова [1]. Наиболее эффективным инструментом решения вопросов

о природоемкости территории, оценке рисков и возможности использования геоэкосистемы ПТС для утилизации отходов является математическое моделирование [3, с. 32-39, 3,4].

Методика исследований. Ситуационное моделирование природных комплексов рассмотрено в работах А.Г. Олейника, А.Я. Фридмана [5, с. 90-103], Ю.Н. Павловского [6], Р.А Полуэктова и др. [7]. При отсутствии баз данных использование этих моделей затруднено при практическом проектировании систем. Сле-

дует отметить, что технология идентификации теоретических моделей не отработана и в настоящее время такие исследования, по крайней мере, в нашей стране не проводятся.

При изучении и проектировании ПТС использовался метод математического моделирования для рассмотрения изучаемых объектов в качестве разновидностей сложных систем [9, 10, с. 25-36]. По способу использования модель выбрана оптимизационная, включающая все элементы, необходимые для решения поставленной задачи. При этом приняли гипотезу, что подвергаемые синтезу математические модели каждой операции должны описывать приход сточных вод и примесей со сточными водами в ПТС и их массоперенос в сопредельных средах.

В основе научных исследований природнотехнической системы лежал ряд принципов.

1. Обоснование геокомплексного устройства природно-технической системы, единства и взаимосвязи всех природных и техногенных процессов и явлений.

2. Необходимость глубокого анализа роли техногенного фактора в экодестабилизации и экодеструкции геоэкосистемы.

3. Антропогенная оптимизация нарушенной природной среды.

Результаты исследований. Источником техногенной опасности при утилизации сточных вод газоперерабатывающей промышленности является предприятие, осуществляющее соответствующий вид деятельности. При этом наиболее значительным влияниям и изменениям подвергаются почвы и грунты зоны аэрации и звенья гидросферы, которые являются ресурсами наиболее потребляемыми, и в тоже время в наибольшей степени влияющими на здоровье населения (подземные и поверхностные воды).

Основной критерий безопасности ПТС при сбросе сточных вод на земледельческие поля орошения (ЗПО) можно записать как:

и < Т + О , (1)

— эк’ 4 '

где Ок - комплекс восстановительных мероприятий.

Вероятность перехода геоэкосистемы из одного состояния в другое зависят от того, каковы функциональные изменения геоэкосистемы. В геоэкосистеме ЗПО появляются локальные изменения параметров. Формирование накапливающихся изменений происходит по схеме их суммирования.

хп = ао + Хп1 + хп2 + ■■■ + хпп , (2)

При длительном переходе развития системы можно, на основе экспериментальных исследований, определить их средние показатели, которые характеризуют изменения в почвах и подземных водах. Тогда для условий ЗПО уравнения накопления поглощенного натрия и легкорастворимых солей в почве будут иметь следующий вид:

хсол = ао + Я(п - 1) , (3)

хнатрия = Ьо + т(п -1) , (4)

где хсол - накопление легкорастворимых солей в почве,%;

х - накопление поглощенного натрия в

натрия *

почве, мг-экв на 100 г почвы; ао - исходное содержание легкорастворимых солей в почве;

Ьо - исходное содержание поглощенного натрия в почве, мг-экв на 100 г почвы; q - интенсивность накопления легкорастворимых солей в почве,%; т - интенсивность накопления поглощенного натрия в почве, мг-экв на 100 г почвы. Повышение уровня грунтовых вод на ЗПО носит циклический характер, связанный с сезонностью сброса сточных вод. В результате многолетних исследований установлена закономерность динамики подземных вод, с максимумами в период сброса и минимумами в период понижения уровней в зимний период, которую можно записать как:

у = -пео8 2я-1, (5)

где у - уровень грунтовых вод, м;

п - интенсивность подъема уровня грунтовых вод, м;

1 - период исследований, 1981-2001г.г.

у = по - п • со8 2р, (6)

где по - исходное состояние подземных вод перед сбросом сточных вод, м. Интегральная характеристика подъема уровней грунтовых вод за период эксплуатации ЗПО имеет вид:

0

dy/dt = -no J— • n • cos2Pt (у)

t di

На основе полученных данных, на ЗПО предусмотрена трехуровневая система мер по минимизации воздействия: оптимизация рН почвенного раствора, качественного и количественного состава легкорастворимых солей, уровня грунтовых вод.

Как правило, моделирование процессов миграции солей в почве начинается с определения параметров физико-химических свойств почвы и химических свойств сбрасываемых сточных вод и грунтовых вод. Прогнозирование ведется с использованием стандартных уравнений солевого баланса [11, 12, с. 174-281].

Уравнения характеризуют накопление или убыль солей в расчетном слое на ограниченной территории, на которой площадные изменения основных компонентов невелики. На более обширных территориях, где колебания этих элементов более значительны, процессы накопления или убыли солей можно описать уравнениями водносолевого баланса в развернутой форме.

Существует ряд методов определения гео-миграционных параметров. Основное одномерное уравнение микродисперсии в гомогенной среде имеет вид [11]:

d2C

dC dC Б—7 - V— = п— (8)

dx2 dx dt В реальных координатах необходима замена х ® тсг2, V ® Q/m, начальное условие С (х, 0) = Со, граничные условия зависят от региона вытеснения солей сбрасываемыми сточными водами. При сплошном вытеснении С (0, 1) = Со.

Применяя интегральное преобразование Лапласа-Карсона,

C = J C exp(-pt)dt

D—- v— = Pn(C - Co),

получим,

d2C dC

I— V—

dx2 dx где р - параметр преобразования. Решение уравнения имеет вид:

— C - C

C = _ ^ = е-“

Co - Co ’

(9)

(10)

(11)

где а = (v/2D)2 - пр/Б - v/2D

Правая часть уравнения (11) может быть найдена по таблицам, приведенным в работе

0

Д.М. Каца, В.М. Шестакова [12, с. 174-281]. Вводим поправочный коэффициент (Кг), установленный автором для корректировки коэффициента фильтрации в условиях ЗПО. Тогда уравнение примет вид

а = д/^/Кг/2Б)2 -пр/Б - v/Kг/2Б, (12)

где C - безразмерная концентрация;

Со - фоновая концентрация солей в почве, г/м3;

х - глубина увлажняемого слоя, м;

V - скорость фильтрации, м/сут;

Б - коэффициент дисперсии;

Со - концентрация солей во входном сечении, г/м3;

п - пористость;

К - поправочный коэффициент;

С - текущая концентрация, г/м3.

Решение уравнения производится с использованием разработанного программного продукта.

Изменение во времени концентрации солей в какой-либо точке равно поступлению солей в результате разности концентрации почвенного раствора, переноса солей движущейся водой и вследствие растворения твердой фазы солей и поступления их в раствор. Для прогнозирования засоления почвы необходимы исходные данные, то есть физико-химические свойства почвы, грунтовых, оросительных и дождевых вод.

Исходя из анализов этих проб, можно дать экологическую оценку текущего состояния почвы, пригодности воды для сброса. В ходе анализа содержания солей вычисляются некоторые параметры для моделирования процессов миграции солей в почве. Используя данные, полученные при анализе проб, производится расчет физико-химических свойств почвы и грунтовых вод на следующий год. Мероприятия по восстановлению ПТС рекомендуются после прогноза состояния системы. В ходе следующей итерации используются уже полученные данные, причем можно изменить параметры сбрасываемых вод и параметры геоэкосистемы, то есть параметры, которыми управляют свойствами почвы. Таким образом, можно получать системы с заданными свойствами и проектировать некоторый запас прочности и надежности.

Основываясь на полученных данных, анализируют тенденции изменения почвы и своевременно принимают необходимые меры для поддержания и улучшения ее качества. В ходе математического моделирования были исполь-

зованы экспериментальные данные за 8 лет на нескольких экспериментальных участках и лизиметрах с различными условиями. В ходе анализа полученных данных выбирались параметры, коэффициент корреляции которых был больше 0,3, так как параметры с коэффициентом корреляции менее 0,3 будут незначительно влиять на результаты.

Для расчета прихода солей в почву автором предложено уравнение, учитывающее разовую норму сброса и концентрацию солей в сбрасываемых водах:

Мс = 100х§ ^ - '№0) св п , (13)

где Мс - масса солей, т/га;

х - глубина увлажняемого слоя почвы, м;

§ - плотность почвы, т/м3; w - —0 - изменение влагозапасов в почве,%; св - концентрация солей в сточной воде, кг/м3; п - количество сбросов сточных вод.

По результатам оптимизации, полученным аналитически, проводится графическая интерпретация данных по содержанию солей в почве, полученных экспериментальным и расчетным путем. Алгоритм проведения операции следующий: вначале вводятся необходимые для расчетов основные данные, далее идет проверка ограничений на параметры. Затем анализируется почва на содержание легкорастворимых солей. На данном этапе система выясняет категорию почвы и возможные методы обработки данных, проводит подбор коэффициентов, которые будут использованы в математической модели.

На следующем этапе по математической модели идет прогнозный расчет на определенный период с возможностью изменения некоторых данных через интервал в один год. Причем содержание солей в почве рассчитывается на глубину увлажняемого слоя почвы. Полученные результаты выводятся как в табличном варианте, так и в виде графиков.

Обсуждение результатов. По результатам проведенных научных исследований было установлено, что техногенная нагрузка в ПТС должна быть увязана с саморегулирующей способностью системы, так как в настоящее время потенциал самовосстановления природной системы превышен, не обеспечивает устойчивое состояние и необходим комплекс мероприятий, направленных на восстановление системы. Необходимость оптимизации параметров природ-

ной подсистемы ПТС требует создания механизма, позволяющего оперативно прогнозировать ее состояние и находить соответствующие решения при негативном прогнозе. Таковым механизмом может быть математическая модель, адекватно отражающая суть процессов, происходящих в почве.

Математическая модель (определение внешних величин, описывающих свойства моделируемого процесса) идентифицирована автором. Тестирование модели на адекватность реальному объекту и программного средства на точность решения (верификация модели) начинается с проверки адекватности описания моделью ранее установленных свойств исследуемого процесса. Устанавливается качественное совпадение свойств объекта, полученных из анализа расчетных зависимостей, с наблюдаемыми свойствами. Далее сравниваются параметры оптимизации, которые могут быть измерены непосредственно в физическом эксперименте, с вычисленными параметрами оптимизации при совпадающих граничных условиях и проводится оценка совпадения этих величин методами математической статистики. В результате проведенных исследований были получены данные и построен график для оценки эффективности работы программы. Сравнение данных теоретических и экспериментальных для прогнозирования засоленности почвы с интервалом в 1 год показывает, что расхождения между экспериментальными данными и расчетными незначительны. Следовательно, этот метод допустим при расчетах прогноза динамики солей для участков ЗПО со сточными водами газоперерабатывающей промышленности. Прогноз необходимости промывок показал, что содержание солей в почве ЗПО не достигло критического значения, следовательно, промывки не нужны.

На основе проведенных расчетов, для моделирования процессов перераспределения ионов кальция и натрия в почвах ЗПО была построена координатная сетка изменения коэффициентов фильтрации, концентрации ионов натрия и кальция в почвенном растворе. При ограничении параметров оптимизации принималось, что моделируется перераспределение ионов натрия и кальция в первые пять дней при установившейся их концентрации после сброса сточных вод. При моделировании учитывались гидродинамические факторы почвы. Для тяжелых глин и суглинков ЗПО характерно из-

менение коэффициентов фильтрации в широких пределах в зависимости от механического состава и влажности почвы, физико-химических процессов, протекающих при сбросе сточных вод.

Ставим задачу по рассмотрению распределения концентраций ионов натрия в почве ЗПО на глубину увлажняемого слоя почвы при коэффициенте фильтрации, равном нулю, что характерно для почв ЗПО, находящихся длительное время в увлажненном состоянии. Результаты распределения концентраций ионов натрия по почвенному профилю при постоянных параметрах глубины и концентрации почвенного раствора во входном сечении 50 мг/л, при коэффициенте фильтрации равном нулю, показали, что концентрация ионов натрия в почвенном растворе остается постоянной по глубине на протяжении всего эксперимента.

При решении задачи с переменными значениями коэффициента фильтрации, равными 0,02; 0,2; 0,5 и 1,0 м/сут., при равномерном распределении солей, постоянных параметрах глубины и концентрации почвенного раствора -50 мг/л во входном сечении, установлено, что перераспределение ионов натрия в почве не зависит от величин коэффициентов фильтрации почв. Перераспределение концентрации ионов натрия в почвенном растворе идет во времени и по глубине. Вынос ионов натрия по почвенному профилю производится на глубину более 0,5 м. При постановке задачи с постоянными значениями коэффициента фильтрации почвы 0,5 м/сут., равномерном засолении, постоянных параметрах глубины и концентрации почвенного раствора равной 56 мг/л во входном сечении, перераспределение ионов кальция по почвенному профилю в первые пять дней после сброса не происходит, идет насыщение почвенного раствора. Расчет ущербов от загрязнения земель производится с помощью программного комплекса, рисунок 1.

Нами разработан ряд графических моделей для прогнозирования перераспределения ионов натрия и кальция при различных параметрах: концентрации почвенного раствора, с переменными значениями коэффициента фильтрации. Данные модели могут быть использованы как для прогнозирования при практическом сбросе сточных вод, так и для формирования параметров геоэкосистемы при проектировании.

Разработанный нами программный комплекс включает в себя программные модули для

Рисунок 1. Фрагмент укрупненной схемы программного модуля «Кадастр»

проектирования параметров геоэкосистемы, расчета ущерба и платы за загрязнение земельных, водных и воздушных ресурсов (рисунок 1) и оценки индивидуального риска здоровью населения по методике ЕРА (США). Программные продукты зарегистрированы в Национальном информационном фонде неопубликованных документов. Результаты исследований внедрены ОАО «Оренбурггазпром».

Таким образом, в результате численного моделирования установлено, что перенос ионов натрия в первые пять дней после сброса сточных вод при установившейся концентрации почвенного раствора не зависит от

гидродинамических параметров геоэкосистемы, но зависит от концентрации легкорастворимых солей в сформировавшемся почвенном растворе. По истечении этого срока в почве устанавливается исходная концентрация почвенного раствора. Перераспределение ионов кальция по почвенному профилю в первые пять дней не происходит. Полученные математические и графические модели позволяют вести проектирование геоэкосистем с заданными свойствами, а затем с помощью программного комплекса давать оценку экологических рисков окружающей среде и здоровью населения.

Список использованной литературы:

1. Мазур И.И., О.И.Молдаванов. Курс инженерной экологии: Учеб. Для вузов /Под ред. И.И.Мазура - М.: Высш. шк., 1999. - 447 с.

2.Гамм Т.А., Жуков В.А. Типизация гидрогеодинамических расчетов. Вопросы региональной геоэкологии и геологии. Совместный выпуск Оренбургского филиала Г орного института УрО РАН и Южно - Уральского отделения МАНЭБ.- Оренбург. - с. 32 - 39.

3. Сидоренко Г.И., Сидоренко Д.Г., Моделирование фильтрационных потоков в неоднородных в изотропных и анизотропных средах. // Методы математического моделирования и информационные технологии. (Труды ИПМИ, вып. 3.) - Петрозаводск, 2002.- с. 282.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4. Саиду Г., Блэнару В., Дрега М., Рэуцэ К. Контроль и прогнозирование плодородия мелиорируемых почв. - М.: Колос, 1984. - 77 с.

5. Олейник А.Г., Фридман А.Я. Ситуационное моделирование природно-технических комплексов // Информационные технологии и вычислительные системы. -2002. - №2. - с. 90-103

6. Павловский Ю.Н. Имитационные системы и модели. Сер. «Математика., кибернетика». М.: Знание, 1990, № 6. - 46 с.

7. Полуэктов Р.А. и др. Динамические модели агроэкосистемы. - Л.: Гидрометеоиздат, 1991. - 312 с.

8. Гидродинамические расчеты на ЭВМ: Учебное пособие /Под. ред. Р.С. Штенгелова. - М.: Изд - во МГУ. 1994. - 335 с.

9. Александров Г. А., Голубятников Л. Л. Моделирование зкологических рядов. - М.: ВЦ АН СССР. 1991 - 24с.

10.Полуэктов Р.А., Топаж А.Г., Миршель В. Сравнение эмпирического и теоретического подходов в математическом моделировании агроэкосистем на примере описания фотосинтеза. /Математическое моделирование, 10, N 7, 1998. - с. 25-36.

11. Харченко С.И. Гидрология орошаемых земель. - Л.: Гидрометеоиздат, 1975. - 358 с.

12. Кац Д.М., Шестаков В.М. Мелиоративная гидрогеология. - М.: Изд-во Московского университета, 1981. - с. 174-281.

i Надоели баннеры? Вы всегда можете отключить рекламу.