Научная статья на тему 'Мониторинг и расчёт остаточного ресурса аварийных мостовых переездов через водопроводящие сооружения'

Мониторинг и расчёт остаточного ресурса аварийных мостовых переездов через водопроводящие сооружения Текст научной статьи по специальности «Строительство и архитектура»

CC BY
158
42
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГИДРОТЕХНИЧЕСКИЕ СООРУЖЕНИЯ / ВОДОПРОВОДЯЩИЕ СООРУЖЕНИЯ / МОСТОВЫЕ ПЕРЕЕЗДЫ / ЭКСПЛУАТАЦИОННЫЙ МОНИТОРИНГ / МОДЕЛИРОВАНИЕ / ТЕХНИЧЕСКОЕ СОСТОЯНИЕ / ТВЕРДОТЕЛЬНАЯ МОДЕЛЬ / ПОРОГ ОПАСНОСТИ / ПУСТОТЫ / РАЗУПЛОТНЕНИЯ / HYDRAULIC STRUCTURES / CONVEYANCE STRUCTURES / BRIDGE CROSSINGS / OPERATION MONITORING / MODELING / TECHNICAL STATE / SOLID-STATE MODEL / DANGER THRESHOLD / VOIDS / UNSEALS

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Бандурин Михаил Александрович

Приводятся результаты моделирования технического состояния длительно эксплуатируемых мостовых переездов через водопроводящие сооружения. В результате эксперимента была построена твердотельная модель несущих элементов мостового переезда через водопроводящие каналы. Рассмотрено напряженно-деформированное состояние железобетонных несущих элементов при различных сочетаниях нагрузок. В результате проведенных численных экспериментов были выделены зоны образования дефектов и повреждений на несущих элементах мостовых переездов через водопроводящие каналы. Эти зоны могут содержать однотипные виды характерных повреждений, что позволяет упорядочить процесс прокладывания профилей георадарного зондирования и определения точек, в которых необходимо производить измерения прочности бетона при проведении натурных обследований. В связи с этим произведено моделирование дефектов на колонне в виде образования пустот и разуплотнений железобетона с размерами диаметром от 50 мм до 100 мм. Установлен интенсивный порог опасности образования пустот и разуплотнений железобетона, начиная с диаметра 100 мм.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Бандурин Михаил Александрович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Monitoring and calculation of residual life of emergency bridge crossings through water-conducting structures

Modelling results of technical state of long-operated bridge crossings across conveyance structures are given in the article. As a result of the experiment a solid-state model for bearing element of a bridge crossing across conveyance canals was constructed. The stress-strain state of ferroconcrete bearing elements under various load combinations is considered. As a result of numerical experiments carried out zones of forming defects and damages on bearing elements of bridge crossings across conveyance canals were marked out. These zones may have characteristic damages of the same type that makes it possible to regulate the process of laying georadar sounding profiles and defining points in which it is necessary to measure concrete strength when conducting inspections on location. In this connection modeling defects on a column by way of formation voids and ferroconcrete unseals with diameters from 50 mm to 100 mm was carried out. Intensive danger threshold for forming voids and ferroconcrete unseals beginning from 100 mm diameter was fixed.

Текст научной работы на тему «Мониторинг и расчёт остаточного ресурса аварийных мостовых переездов через водопроводящие сооружения»

УДК 626.843

Мониторинг и расчёт остаточного ресурса аварийных мостовых переездов через

водопроводящие сооружения

М.А. Бандурин

ФГБОУВПО «Новочеркасская государственная мелиоративная академия»,

г. Новочеркасск

Инструментальные обследования водопроводящих сооружений субъектов РФ показали, что в ряде случаев их эффективность, эксплуатационные качества и надежность оказываются недостаточными, что вязано это с нарушениями нормального выполнения функции водообеспечения системами, отказами в их работе. Наиболее частыми являются дефекты внутреннего характера, приводящие к нарушению нормального функционирования водопроводящих сооружений.

Только в Ростовской области числиться на балансе Ростовмелиоводхоза более 48 мостовых переездов, которые является составной частью автомобильной дороги и представляет собой комплекс сложных и дорогостоящих сооружений, его нужно рассматривать не только как транспортное, но и как гидротехническое сооружение, а, следовательно, размеры и форма в значительной степени обосновываются гидрологическими, гидравлическими и русловыми расчётами [1].

Преобладающими аварийными дефектами являются полное разрушение, образование дефектов, нарушающих нормальную работу конструкции; нарушение стыковых соединений, а также разрушение зон опирания, замковой части. Опасными дефектами, вызывающими ухудшение эксплуатационных свойств в элементах конструкции, становятся образующиеся трещины, размеры которых превышают предельно допустимые значения, отслоение защитного слоя бетона, коррозия бетона арматуры в виде высолов и ржавых потёков [2].

Можно сделать вывод, что нарушения стыковых соединений сборных элементов, разрывы и проломы стенок в различных зонах, трещины, сдвижка и просадка элементов относительно друг друга приводят к нарушению нормальной работы мостовых переездов. Отсюда возникают такие проблемы, как потеря дефицитной поливной воды, подъем уровня грунтовых вод, заболачивание и засоление орошаемых земель. Решение данных проблем должно быть основано на обязательном учёте требований надёжности при проектировании, строительстве и эксплуатации.

Мостовой переход является составной частью автомобильной дороги и представляет собой комплекс сложных и дорогостоящих сооружений. Мостовой переход нужно рассматривать не только как транспортное, но и как гидротехническое сооружение,

а, следовательно, размеры и форма мостового перехода в значительной степени обосновываются гидрологическими, гидравлическими и русловыми расчётами.

При проектировании мостового перехода необходимо решать одновременно следующие задачи:

1) создать оптимальные условия для перевозки грузов и пассажиров автомобильным транспортом;

2) обеспечить возможность надежной работы мостового перехода в течение длительного срока его службы в условиях непостоянства речного стока, природных русловых деформаций, нарушения мостовым переходом естественного режима реки;

3) получить экономически обоснованное проектное решение, которому соответствует минимальная величина строительных и эксплуатационных затрат;

4) свести до минимума неблагоприятное воздействие на окружающую среду.

Оценка технического состояния мостовых переездов водопроводящих сооружений проводится в зимний период, что не позволяет реально оценить показатели

безопасности. В большинстве случаев выводы строятся на данных визуальных обследований и небольшом объёме инструментальных измерений.

Параметрами, подвергаемыми неразрушающему контролю в бетонах, являются прочность, величина защитного слоя, влажность, морозоустойчивость, влагонепроницаемость и ряд других. При производстве железобетонных изделий также контролируют натяжение арматуры и величину вибрации при уплотнении бетонной смеси. Но основным контролируемым параметром для бетонов является прочность на сжатие [3].

На долговечность железобетонной конструкции существенное влияние оказывает величина защитного слоя бетона и наличие на нём дефектов - раковин, пор, трещин и т.д. Защитный слой предохраняет арматуру от доступа влаги, кислорода, агрессивных веществ и газов. Арматурные стержни, имеющие небольшой защитный слой или значительные дефекты в нём, подвергаются коррозии в первую очередь [4].

Рисунок 1 - Профиль георадарного зондирования по оси мостового переезда

Целью исследований приборами неразрушающего контроля было обнаружение возможных дефектов бетона мостовых переездов и определение состояния арматурных стержней. Данные натурные исследования производились с помощью георадара ОКО-2 с АБ-400, сертифицирован по международной системе качества ISO-9001, имеет гигиенический сертификат и сертификат соответствия, электронного измерителя прочности бетона ИПС-МГ4.01 и ультразвукового эхо-импульсного толщиномера А1209 [5].

Рисунок 2 - Профиль георадарного зондирования по оси мостового переезда

с выделенными пустотами

Исследовались приборами неразрушающего контроля мостовые переезды Нижнее

- Донской и Право - Егорлыкской оросительных систем.

■ ¥ ив№МИ — ■'•ч - «*»■>« >»■. ЧИН Щтл*

г •****, щ , Л *' «*■«»—«*•«■«У»*у»«» —

’ /-V ** <

' \ *• '' * Л’ * ■

На рисунке 1 представлен профиль георадарного зондирования пройденный поперёк течения воды по мостовому переезду. При интерпретации радарограммы были определены мощности бетонного покрытия и состояние подплитного пространства.

На радарограмме в верхней части разреза в районе 0-3 м и 6-9 м выделяются две отражающие границы. Они соответствуют подошве армобетонных плит и границы раздела воздух-грунт. Толщина армобетонных плит 9-10 см, мощность воздушной прослойки от 0 до 10 см. Ниже залегает слой основного тела насыпи вперемешку с намытыми породами.

На рисунке 2 представлена радарограмма, полученная по тому же профилю. Области с интенсивным затемнением соответствуют участкам среды с большей энергией отражённого сигнала, по сравнения со светлыми областями. Область с низкой энергией отражённого сигнала соответствует более однородной среде, чем область с высокой энергией отражённого сигнала. На рисунке видно, что в районе 0-3 м и 6-9 м неоднородность среды доходит до глубины 40 см.

Рисунок 3 - Профиль георадарного зондирования по ширине быка мостового переезда с выделенной арматурой и зоной соприкосновения с водой

На рисунке 3 представлен профиль георадарного зондирования по ширине быка мостового переезда с выделенной арматурой и зоной соприкосновения с водой. На радарограмме в верхней части разреза выделяются отражения от поперечных арматурных стержней. Ниже залегает слой, с отражениями от многочисленных локальных объектов.

Рисунок 4 - Профиль георадарного зондирования по ширине быка мостового переезда с выделенной арматурой и зоной соприкосновения с водой

На рисунке 4 показан фрагмент профиля георадарного зондирования по ширине быка мостового переезда с выделенной арматурой и зоной соприкосновения с водой. На радарограмме в верхней части разреза выделяются отражения от поперечных арматурных стержней. Ниже залегает слой, с отражениями от многочисленных локальных объектов.

З

При обследовании мостового переезда, установлено, что опоры имеют характерные разрушения защитного бетона, оголения арматурной сетки в местах контакта с водой (R^ =35,4 МПа класс бетона В 30), по верху борта (R^ =43,2 МПа класс бетона В 35). Исследование колонн показало отслоение бетона, его коррозию в зоне опирания на фундаментную плиту (R сж =39,4 МПа класс бетона В 30).

Стальные элементы мостовых переездов (плоский и сегментный затворы) были исследованы на предмет толщины металла ультразвуковым эхо-импульсным толщиномером А1209.

При выборе ультразвукового эхо-импульсного толщиномера для измерений исходили не только из диапазона толщины металла сооружений, также учитывалась степень кривизны и шероховатости поверхностей затворов, величину поглощения и рассеяния ультразвука в металле и другие условия.

Несвоевременно выявленные и устраненные дефекты нередко перерастают в серьезные конструктивные нарушения. Моделировать техническое состояние мостовых переездов предлагается с применением программного комплекса SCAD в сочетании с исследованием технического состояния их конструкции по внешним признакам [5].

В результате эксперимента была построена твердотельная модель несущих элементов мостового переезда через водопроводящие каналы. Рассмотрено напряжённо -деформированное состояние железобетонных несущих элементов при различных сочетаниях нагрузок.

Число элементов и число узлов ансамбля соответственно составило 479021 и 32901. Кодирование исходной информации осуществлялось в терминах метода приращений с учётом фрагментального представления несущих элементов мостового переезда в виде объектов простой геометрической формы выполненных из железобетона марки В 45.

В постановке численного расчёта несущих элементов мостового переезда через водопроводящие каналы без образования дефектов преследовалась цель установления адекватности твердотельной модели напряжённо - деформированного состояния.

При проведении натурного эксперимента наибольшие значения нормальных напряжений при полном загружении составили 102,4 105 Н/м2, в численном расчёте моделировании - 98,7-105 Н/м2 , что составляет разницу менее 7 % и подчеркивает адекватность твердотельной модели напряжённо - деформированного состояния [6, 7].

Сравнения эпюр перемещений несущих элементов мостового переезда через водопроводящие каналы, как по вертикали, по горизонтали вдоль и поперёк несущих элементов выявило незначительные внутренние изменения. [8].

Перемещения по горизонтали вдоль несущих элементов показывают незначительные смещения зон опирания железобетонных балок, а перемещения по горизонтали несущих элементов показывают смещения крайних колонн и опёртых на них железобетонных балок.

Как показали результаты сравнения эпюр эквивалентного напряжения von M^s наибольшие напряжения возникают по вертикали несущих элементов мостового переезда, а именно на крайних колонах и горизонтальных балках опёртых на них. Данные результаты свидетельствуют о возникновении критических напряжений в крайних колонах, на четверть больше чем в других колоннах мостового переезда.

На втором этапе было произведено моделирование несущих элементов мостового переезда с образованием дефектов и повреждений, а именно образование зон разрушений и разуплотнения железобетона на колонне. Наиболее характерным и опасным дефектом является потеря несущей способности одной из колонн мостового переезда, а именно крайняя - как наиболее подверженная внешним воздействиям и испытывающая наибольшие эквивалентные напряжения von Misеs [9].

На эпюре перемещений по вертикали показано критическое изменение положения колонны и опирающихся на неё балок, из-за уменьшения её несущей способности вследствие образования дефектов. Происходит критическое смещение оголовка колонны вследствие чего потеря устойчивости опирающихся на него балок. Данные результаты свидетельствует о потери несущей способности именно вертикального элемента - колонны [10, 11].

Перемещения по горизонтали вдоль несущих элементов показывают незначительные смещения зон опирания железобетонных балок, а перемещения по горизонтали поперёк несущих элементов показывают критическое смещение крайней колонны, которая тянет за собой и опёртые на неё железобетонные балки [12].

При сравнении эпюр эквивалентного напряжения von M^s и перемещений наибольшие напряжения возникают по вертикали несущих элементов мостового переезда, а именно на оголовке крайней колоны и горизонтальных балках опёртых на неё. Данные результаты свидетельствуют о возникновении критических напряжений в местах опирания, в два раза больше чем в других колоннах мостового переезда, что приводит к разрушению рассматриваемых элементов и потери несущей способности всего сооружения [13, 14].

В дальнейшем произведено моделирование дефектов на колонне в виде образование пустот и разуплотнений железобетона с потерей несущей способности до половины её площади. Размеры диаметра дефекта начинались от 50 мм до 100 мм. В ходе произведенных моделирований был установлен интенсивный порог опасности, начиная с диаметра 100 мм происходит разрушение колонны.

Получены эмпирические зависимости: Группа 1 без дефектов

Оуз=0,0003Па2+0,0422а-0,131; R2=0,97; (1)

Группа 2 с потерей несущей способности

0уз=0,00148а2+0,0295а-0,0479; R2=0,98; (2)

В результате проведенных численных экспериментов были выделены зоны образования дефектов и повреждений на несущих элементах мостовых переездов через водопроводящие каналы, которые могут содержать однотипные виды характерных повреждений, что позволяет упорядочить процесс прокладывания профилей георадарного зондирования и определения точек, в которых необходимо производить измерения прочности бетона при проведении натурных обследований. В связи с этим произведено моделирование дефектов на колонне в виде образование пустот и разуплотнений железобетона с размерами диаметром от 50 мм до 100 мм. Установлен интенсивный порог опасности, начиная с диаметра 100 мм образования пустот и разуплотнений железобетона.

Выводы:

1. Национальный стандарт ГОСТ Р 22.1.12-2005 «Безопасность в чрезвычайных ситуациях. Структурированная система мониторинга и управления инженерными системами зданий и сооружений. Общие требования» позволяет сформулировать основные требования к мониторингу водопроводящих сооружений (каналы, акведуки, дюкеры, гидротехнические туннели, регуляторы водосбросы, водоспуски на магистральных каналах, мостовые переезды и т.д.) мелиоративных систем.

2. Качественный мониторинг водопроводящих сооружений с использованием инструментальных методик и численных методов позволяет оценить изменение напряженно-деформированного состояния при различных сочетаниях постоянных, временных, кратковременных и особых нагрузок.

3. Анализ неудовлетворительного состояния отдельных водопроводящих сооружений юга России свидетельствует о высоком количестве сооружений с неудовлетворительным и опасным уровнем безопасности. Это объясняется

недостаточностью выполняемых ремонтных работ, нерегулярностью уходных работ, низкой квалификацией эксплуатационного персонала.

Литература:

1. Волосухин Я.В., Бандурин М.А. Проведение эксплуатационного мониторинга с применением неразрушающих методов контроля и автоматизация моделирования технического состояния гидротехнических сооружений / Мониторинг. Наука и безопасность. 2011. № 3. С. 88-93.

2. Бандурин М.А. Обследование состояния оросительных лотковых каналов Азовской оросительной системы неразрушающими методами / Политематический сетевой электронный научный журнал кубанского государственного аграрного университета. 2006. № 24. С. 72-76.

3. Волосухин В.А., Бандурин М.А. Особенности применения моделирования аварийных мостовых переездов через водопроводящие каналы при проведении эксплуатационного мониторинга /Известия высших учебных заведений. СевероКавказский регион. Серия: Технические науки. 2012. № 5. С. 82-86.

4. Бандурин, М.А. К вопросу о состоянии железобетона лотковых каналов Азовской оросительной системы / Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2006. № 24. С. 82-86.

5. Бандурин М.А. Особенности технической диагностики длительно эксплуатируемых водопроводящих сооружений / Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. - 2005.-прилож. № 1 С. 141-147.

6. Бандурин М.А. Моделирование напряженно-деформированного состояния оросительного лотка-оболочки / Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. 2006. № 24. С. 76-81.

7. Бандурин М.А. Особенности технической диагностики длительно эксплуатируемых водопроводящих сооружений / Инженерный вестник Дона 2012 № 2.

8. Волосухин Я.В., Бандурин М.А. Вопросы моделирования технического состояния водопроводящих каналов при проведении эксплуатационного мониторинга / Мониторинг. Наука и безопасность. 2012. № 1. С. 70-74.

9. Михайлин А.А. и др. Устойчивость склонов в земледелии / Научно-теоретич. журнал «Известия горского государственного аграрного университета». - 2010. - Т.47, ч.2.

- С. 111-115. 0,31

10. Волосухин В.А., Бандурин М.А. Патент на изобретение «Способ проведения эксплуатационного мониторинга технического состояния лотковых каналов оросительных систем» № 2368730. Зарегистрировано в Государственном реестре изобретений 27 сентября 2009 г.

11. Бандурин М.А. Конечно-элементное моделирование напряженно-деформированного состояния Ташлинского дюкера на Право-Егорлыкском канале / Инженерный вестник Дона 2012 № 3.

12. Бандурин М.А. Проблемы оценки остаточного ресурса длительно эксплуатируемых водопроводящих сооружений / Инженерный вестник Дона 2012 № 3.

13. Михайлин А.А. О глубоком рыхлении орошаемых земель глубокорыхлителем чизельного типа / Природообустройство. - 2008. - №4. - С.74-77.

14. Бандурин М.А. и др. Патент на изобретение «Устройство для проведения эксплуатационного мониторинга водопроводящих сооружений» № 2458204. Зарегистрировано в Государственном реестре изобретений 10 августа 2012 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.