Научная статья на тему 'Многофункциональный адаптивный пьезоэлектрический коммутатор оптических каналов'

Многофункциональный адаптивный пьезоэлектрический коммутатор оптических каналов Текст научной статьи по специальности «Медицинские технологии»

CC BY
122
32
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЛИНЕЙНЫЙ МИКРО-ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ПРИВОД / МНОГОФУНКЦИОНAЛЬНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КОММУТАТОР / ОПТИЧЕСКИЙ ЛУЧ / ЦИЛИНДРИЧЕСКИЙ ОСЦИЛЛЯТОР / ПОЛУПРОЗРАЧНОЕ ЗЕРКАЛО

Аннотация научной статьи по медицинским технологиям, автор научной работы — Гасанов Мехман Гусейн, Гаджиева Конул Рамиз К., Годжаева Шалала Фаиг К.

Рассмотрены перспективные пути решения проблемы у современных волоконно-оптических систем связи, одним из который является применение пьезоэлектрических дефлекторов и приводов, на основе которых возможны создания новых пьезоэлектрических коммутаторов для коммутации, разделения и мультиплексирования оптического информационного потока с разными длинами волн. Проведен системный анализ возможностей повышения технических характеристик линейных микро-пьезоэлектрических приводов, сделан вывод о перспективности применения линейных микро-пьезоэлектрических приводов для позиционирования оптических зеркал с целью коммутации оптических лучей. Разработано оригинальная конструкция линейного микро-пьезоэлектрического привода для применения в многофункциональных пьезоэлектрических коммутаторах оптических каналов которые, скорость перехода полупрозрачного зеркала из одного состояния в другое определяет быстродействие оптического коммутатора, который обеспечивается при помощи ЛМПЭП. Предложена схема многофункционального пьезоэлектрического коммутатора для коммутации, разделения и мультиплексирования оптического информационного потока с разными длинами волн. Анализированы особенности и принципы работы многофункциональных пьезоэлектрических коммутаторов оптических каналов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по медицинским технологиям , автор научной работы — Гасанов Мехман Гусейн, Гаджиева Конул Рамиз К., Годжаева Шалала Фаиг К.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Многофункциональный адаптивный пьезоэлектрический коммутатор оптических каналов»

COMMUNICATIONS

MULTIFUNCTIONAL ADAPTIVE PIEZOELECTRIC SWITCH

OF OPTICAL CHANNELS

DOI 10.24411/2072-8735-2018-10054

Mehman H. Hasanov,

Azerbaijan Technical University, Baku, Azerbaijan, mhasanovnew@gmail.com

Konul R. Hadjyeva,

Sumgait State University, Sumgait, Azerbaijan, konul.haciyeva.1974@mail.ru

Shalala F. Qodjaeva, Keywords: linear micro-piezoelectric drives,

Azerbaijan Technical University, Baku, Azerbaijan, multifunctional piezoelectric switch, optical rays,

shelale.4666.5@gmail.com cylindrical oscillator, semitransparent mirror.

Perspective ways for solving the problem in modern fiber-optic communication systems are considered, one of which is the application of piezoelectric deflectors and drives, on the basis of which new piezoelectric switches can be created for commutation, separation and multiplexing of an optical data stream with different wavelengths. A system analysis of the possibilities of increasing the technical characteristics of linear micro-piezoelectric drives has been carried out, a conclusion has been made about the prospects of application of linear micro-piezoelectric driving gears for positioning optical mirrors for the purpose of commutation of optical rays.

An original construction of a linear micro-piezoelectric drives for the application in multifunctional piezoelectric switches of optical channels has been developed, the transition speed of a semitransparent mirror from one state to another determines the speed of the optical commutator, which is provided via LMPED.

A circuit of a multifunctional piezoelectric switch for switching, separating and multiplexing of an optical data stream with different wavelengths is proposed.

Features and principles of multifunctional piezoelectric switches operation of optical channels are analyzed.

Information about authors:

Mehman Huseyn Hasanov, Candidate of Technical Sciences, PhD, Department of "Multi-channel telecommunication systems", Azerbaijan Technical University, Baku, Azerbaijan

Konul Ramiz Hacjyeva, assistant, The Department of " Electrical Engineering and Energy", Sumgait State University, Sumgait, Azerbaijan Shalala Faiq Qodjaeva, Doctorant of the Department "Multichannel telecommunication systems" of the Azerbaijan Technical University Baku, Azerbaijan

Для цитирования:

Гасанов М.Г., Гаджиева К.Р., Годжаева Ш.Ф. Многофункциональный адаптивный пьезоэлектрический коммутатор оптических каналов // T-Comm: Телекоммуникации и транспорт. 2018. Том 12. №3. С. 64-68.

For citation:

Hasanov M.H., Haciyeva K.R., Qodjaeva S.F. (2018). Multifunctional adaptive piezoelectric switch of optical channels. T-Comm, vol. 12, no.3, pр. 64-68.

-e-

Introduction

One of the main advantages of optical systems is their carrying capacity. The practical value of this property lies in [he possibility of a multiple increase in the speed of information transmission over optical communication networks, both in the active backbone and passive subscriber level. And this makes research in this area of different elements of optical networks, including switches very relevant and promising.

Modern fiber-optic communication systems pose new problems for switching devices of optical channels. The main problem of such switches is to provide maximum high speed rales for terabit optical communication lines being developed [ 1 ], efficiency (4) and to provide the lowest possible unit cost, as well as to reduce the power consumption in comparison with existing electronic analogues. The solution of these problems is possible with the use of traditional mechanical, electro-optical, thermo-optical, liquid-crystal, semiconductor, integrally optical, micro-electromechanical and other devices [1,2,3].

One of the most promising ways to solve the problem is the use of piezoelectric deflectors [21 and drives [3,5,6on the base of which new piezoelectric switches can be created for commutation, separation and multiplexing of the optical information stream with different wavelengths.

Features of multifunction piezoelectric switches for optical channels is that the speed of the sem ¡transparent mirror transition from one state to another determines the speed of the optical switch, which is provided by linear micro-piezoelectric drives (LMPED) and the switching of ports is set by the LMPED control unit for a relatively long period of time. Connections can change, for example, due to the connection to the system of previously unused devices, the redistribution of traffic depending on the time of a day during a failure detection of some external fiber-optic communication line, switching to a standby circuit and monitoring optical networks etc.

Linear micro-piezoelectric drives

Currently, high-frequency adjustable transducers of translations! motion, operating in the microwave range with an accuracy of hundredths of a few dozen micrometers, arc required in the areas of optical technology for controlling optical rays. The most effective for these purposes is the application of LMPED translational motion. In LMPED, the conversion of electrical energy into mechanical energy is performed at the expense of inverse piezoelectric effect.

Linear micro-drives are quite diverse according to their design features. In |7, 8], various designs of LMPED were analyzed.

However, in this paper the work of a new developed LMPED Was briefly described. A new construction of the proposed LMPED is shown in Fig. I., and the construction of the oscillator and the position explaining the work of LMPED is shown in figures 2, 3 and 4.

The proposed LMPED contains an oscillator (piezoelectric element) 1 interacting with guiding 2. The interaction is carried out via wear-resistant construction 3 and key 4, by means of which the phase changes by 180° for reversal. Guiding 2 is rcsilicntly pressed against wear-resistant construction, and oscillator I is installed to move along the guiding.

Fig. I. Circuit design of LMPED

Structurally, the LMPED oscillator is performed in the form of a cylinder with longitudinal vibration electrodes along the circumference of the cylinder and longitudinal vibrations in height. The construction of the oscillator is shown in the position (Fig.2a.). The electrodes of longitudinal vibrations along the circumference of the cylinder are the electrodes 5 and 6, and the electrodes of longitudinal vibrations along the height are the electrodes 7 and 8. Electrically similar electrodes are connected together and connected to an alternating voltage source, as shown in Fig. 4, The frequency of the supply source should correspond to the resonance frequency of the oscillation. The position (Fig. 2b) shows the development of the cylindrical oscillator electrodes. The illustration of the cylinder oscillation is shown schematically in (3 Fig.3a) during excitation of longitudinal vibrations along its length. The illustration of longitudinal vibrations excitation along the height of the cylinder is shown schematically in (Fig.3b),

/

Fig. 2, Circuit design of the oscillator

65

Id Out 2 2 ill Out 2 3

Fig. 6. A simplified circuit ora piezoelectric switch for optical channels

As it is seen from Fig. 5, a multifunctional adaptive piezoelectric optical channel switch contains LMPED-1, an active mirror-2 (Fig. 5b), a passive mirror -3 (Fig. 5c), a LMPED control umt-4, an optical fiber-5, a cabinet-6, lens-7 is connected to it.

While the switch is being implemented (Fig. 5), integrated technique is used, the size and shape of the active zone mirror (micron) depends on the standard and function of the switch. Each mirror is controlled individually via LMPED, depending on the number of switched channels, 16 LMPED are used in Fig.5. All lenses-7 are made equally. The control unit of the piezoelectric switch for optical channels is designed to control the LMPED, before aligning the ray from the incoming optical fiber to the outgoing one and thereby ensuring optimal reception and redirection of the rays to the output device according to a predetermined algorithm. The elements of the piezoelectric optical switch with controlled minors and the control unit arc structurally housed in oik cabinet.

mirror will cross the path of the optical How and divide it into two mutually perpendicular flows with the same capacities (intensities). In the circuit of Eig.5b the active position is shown in the form of solid lines, and the mirror in green light.

hi the active position for switching optical rays, ii is ncccssary the transparent mirror 1 to move vertically along the guide Ay, where A v corresponds to the receiving position and the redirection of the optical ray. The transition to the active state of semi transparent mirrors is carried out during the operation of LMPED, which is controlled from the control unit. Obviously, the transition rate of the semi transparent mirror from one state to another determines the rale of the optical switch, which is provided via LMl'ED. Each port can additionally contain elements for attaching an optical fiber to the switch body (not shown in the figure) and the lens correcting the spatial divergence of the laser beam during its spread.

Conclusion

An original construction of a linear micro-piezoelectric drive for the application in multifunctional piezoelectric switches of optical channels is developed, the transition rate of a semi transparent mirror from one stale to another determines the rate ofthe optical switch, which is provided via LMPED.

A circuit of a multifunctional piezoelectric switch for switching, seperating and multiplexing of an optical data stream with dilTcrent wavelengths is proposed.

Features and principles of multifunction piezoelectric switches operation of optical channels are analyzed.

The proposed multifunctional piezoelectric switch can be used for switching, seperating and multiplexing an optical data stream with different wavelengths, including for the connection to the system of previously unused devices, traffic redistribution depending on the time of a day during the detection of a certain external fiber optic communication line, switching to a backup line and monitoring optical networks.

References

The multifunctional piezoelectric switch of the optical channels operates as follows:

As it is shown in figures 5 and 6, all signal transmission ports are bi-directional, at the time inputs and outputs of the data can be considered as input-outputs and signals can be transmitted by

light streams with different wavelengths (Xl, X2, X3.,Xn).

As it is seen from figures 5 and 6, the switch transmits optical signals from eight input and output ports. In this simplified example, the switch contains a matrix of 16 mobile transparent mirrors being located at the intersections of four rows and four columns, as a result of which it is possible to arrange 16 input and output ports for spectral multiplexing in various combinations of Xn. Each semi transparent mirror can be in two stable stales. One of the states of transparent mirrors is initial or passive Fig. 5.c, at which the sem¡transparent mirror docs not intcrscct the path ofthe optical flow and in the simplified circuit ofthe switch is shown by broken lines in Fig. 6. In the initial position, no control signal is sent from the control unil-4 to control all the LMPED, at the time the entire sem ¡transparent mirror is in a passive stable slate. The second stale of the transparent mirrors is an elevated stale or active Fig. 5b, in which a sem ¡transparent

1. Gayvorovskaya G.S., Ryabsov A.V. (2011). Features of using optical commutators in modem information networks. Applicable Information Models. Sofia, 1THEA, 2011, N22, pp. 169-181.

2. Maharramov V.A., Hasanov M.G. (2017). Principles of dal a (low commutation of optical networks. International Journal of Research -Cranlhaalayah. 5(12), pp. 348-356. https^/doLcus'10.5281/zenodo.l 142312.

3. Hasanov M.G., Vishnevski V.S. (1995). Piezoelectric reversible drive. Patent USSR№ 1827708.

4. Hasanov M.H. (2010). Efficiency of a piezoelectric deflector for a light beam in communication technology'. Baku, 2010, pp. 44-46.

5. Hasanov M.H., Maharramov V.A, (2017). Application of piezoelectric light beam deflector in optical commutators of liber-optical communication networks. The international science-technical jornal HEARD ofthe Azerbaijan Engineering Academy. Vol. 9. No, 2, pp. 116-121.

6. Mehman H. Hasanov, Bayram G. Ibrahimov, Shaiala F. Qodjaeva (2018). Research efficiency optical Iransport networks with use transferring and reception optoelectronics module. International Journal of Research -Cranlhaalayah. Vol.6 (lss.2): 1)01: IQ.S28l/zenodo.l194756

7. Sa mar in A, (2006). Miniature linear piezoelectric motors. Components and technologies. No. 10, pp. 36-41.

8. Lavrinenko V.V., Kartashev I.A., Vishnevsky V.S. (1980). Piezoelectric motors. Moscow. 112 p.

T-Comm Vol.12. #3-2018

МНОГОФУНКЦИОНАЛЬНЫЙ АДАПТИВНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ КОММУТАТОР

ОПТИЧЕСКИХ КАНАЛОВ

Гасанов Мехман Гусейн, Азербайджанский Технический Университет, г. Баку, Азербайджан, mhasanovnew@gmail.com

Гаджиева Конул Рамиз к., Сумгаитский Государственний Университет, г. Сумгаит, Азербайджан,

konul.haciyeva.1974@mail.ru

Годжаева Шалала Фаиг к., Азербайджанский Технический Университет, г. Баку, Азербайджан, shelale.4666.5@gmail.com

Дннотация

Рассмотрены перспективные пути решения проблемы у современных волоконно-оптических систем связи, одним из который является применение пьезоэлектрических дефлекторов и приводов, на основе которых возможны создания новых пьезоэлектрических коммутаторов для коммутации, разделения и мультиплексирования оптического информационного потока с разными длинами волн. Проведен системный анализ возможностей повышения технических характеристик линейных микро-пьезоэлектриче-ских приводов, сделан вывод о перспективности применения линейных микро-пьезоэлектрических приводов для позиционирования оптических зеркал с целью коммутации оптических лучей.

Разработано оригинальная конструкция линейного микро-пьезоэлектрического привода для применения в многофункциональных пьезоэлектрических коммутаторах оптических каналов которые, скорость перехода полупрозрачного зеркала из одного состояния в другое определяет быстродействие оптического коммутатора, который обеспечивается при помощи ЛМПЭП. Предложена схема многофункционального пьезоэлектрического коммутатора для коммутации, разделения и мультиплексирования оптического информационного потока с разными длинами волн. Анализированы особенности и принципы работы многофункциональных пьезоэлектрических коммутаторов оптических каналов.

Ключевые слова: линейный микро-пьезоэлектрический привод, многофункционaльный пьезоэлектрический коммутатор, оптический луч, цилиндрический осциллятор, полупрозрачное зеркало.

Литература

1. Gayvorovskaya G.S., Ryabsov A.V. Features of using optical commutators in modern information networks // Applicable Information Models. Sofia, ITHEA, 2011, №22, pp. 169-181.

2. Maharramov V.A., Hasanov M.G. Principles of dataflow commutation of optical networks // International Journal of Research. Granthaalayah, 2017. 5(12), pp. 348-356. https://doi.org/I0.528l/zenodo.ll423l2

3. Гасанов М.Г., Вишневский В.С. Пьезоэлектрический реверсивный двигатель. Авторское свидетельство СССР.1995. № 1827708.

4. Гасанов М.Г. Эффективность пьезоэлектрического дефлектора светового луча в технике связи. Известия АзТУ. №2 (66). Баку 2010. С. 44-46.

5. Hasanov M.H., Maharramov V.A. Application of piezoelectric light beam deflector in optical commutators of fiber-optical communication networks // The international science-technical jornal HEARD of the Azerbaijan Engineering Academy. Vol. 9, № 2, 2017, pp. 116-121.

6. Mehman H. Hasanov, Bayram G. Ibrahimov, Shalala F. Qodjaeva. Research efficiency optical transport networks with use transferring and reception optoelectronics module // International Journal of Research. Granthaalayah. Vol.6 (Iss.2): February, 2018. DOI: I0.528I/zenodo.II94756

7. Самарин А. Миниатюрные линейные пьезоэлектрические двигатели // Компоненты и технологии. 2006, №10. С. 36-41.

8. Лавриненко В.В., Карташев И.А., Вишневский В.С. Пьезоэлектрические двигатели. Москва.1980. 112 с.

Информация об авторах:

Гасанов Мехман Гусейн, к.т.н., доцент кафедры "Многоканальные телекоммуникационные системы" Азербайджанского Технического Университета, г. Баку, Азербайджан

Гаджиева Конул Рамиз к., ассисент кафедры "Электротехника и энергетика" Сумгаитского Государственного Университета, г. Сумгаит, Азербайджан

Годжаева Шалала Фаиг к., докторант кафедры "Многоканальные телекоммуникационные системы" Азербайджанского Технического Университета, г. Баку, Азербайджан

i Надоели баннеры? Вы всегда можете отключить рекламу.