Применение GENESIS32 предоставляет возможность полностью контролировать технологический процесс с максимальным удобством ввода и отображения информации. Некоторые особенности, такие как наличие виртуальной цифровой клавиатуры , высвечиваемой на сенсорных экранах (touch screen), упрощают систему ввода информации с рабочих станций.
Литература
1. И.В. Мирошник. Теория Автоматического Управления. Линейные системы. СПб. :Питер 2005 - 336с.
2. А.М. Водовозов. Цифровые элементы систем автоматики. Учебное пособие. Вологда.ВоГТУ 2001 - 108с.
3. Руководство пользователя. Система управления процессом. SIMATIC WinCC. Siemens 2003 - 34 c.
4. Н.П. Деменков. SCADA-системы как инструмент проектирования АСУ ТП. Издательство МГТУ имени Н.Э. Баумана 2005 - 131с.
5. Ю.Н. Федоров. Справочник инженера по АСУТП. Проектирование и разработка. Инфа-Инженерия, 2008 - 928с.
Токарь А.Ю.
Студент, Петербургский государственный технологический институт (технический университет) МЕМБРАННЫЕ ПРОЦЕССЫ РАЗДЕЛЕНИЯ
Аннотация
В статье рассмотрена сущность мембранных процессов разделения через знакомство с основными публикациями в периодических научных изданиях, ознакомление с учебно-методической литературой по данной тематике.
Ключевые слова: мембранные процессы, разделение жидких и газовых смесей, мембраны.
Tokar A. J.
St. Petersburg State Technological Institute (technical university)
MEMBRANE SEPARATION PROCESS
Abstract
The article discusses the essence of membrane separation processes through familiarity with basic publications in scientific periodicals, familiarization with instructional literature on the subject.
Keywords: membrane processes, the separation of liquid and gas mixtures, the membrane
Процессы разделения жидких и газообразных систем играют важную роль во многих отраслях народного хозяйства. Так, для осуществления процессов разделения жидких смесей, например, применяют такие методы как перегонка, ректификация, экстракция, адсорбция и др. Однако наиболее универсальным методом разделения является разделение с использованием полупроницаемых мембран (мембранные методы) [1].
Значение мембранной технологии в последние годы резко возросло, прежде всего, как технологии, способной навести мост через пропасть, разделяющую промышленность и экологию.
Глобальный характер воздействия и влияния мембранной технологии на реализацию других российских и мировых научнотехнологических приоритетов в последнее время получили свое дальнейшее подтверждение. Критическая технология федерального уровня «Мембраны» вошла в 17 приоритетных для российской науки направлений, в которых российские ученые опережают мировой уровень, причем без использования мембранных процессов невозможно обеспечить поддержание необходимого научно-технического уровня в 12 приоритетах. К этому необходимо добавить серьезные возможности мембранных процессов в решении важнейшей задачи современного этапа развития нашего общества - технологического обновления отечественной промышленности [2].
Жизненная необходимость широкомасштабного внедрения мембранных процессов определяется многими факторами и, прежде всего, их прямым влиянием на обеспечение национально-экономических проблем и перспективах их практического использования.
За последние десятилетия мембранные методы разделения интенсивно развиваются и реализуются в самых различных сферах деятельности человека. Особенно широко эти методы используются для опреснения соленых вод. Так, в 1980 г. более половины всей опресненной воды на земле получали мембранными методами, причем производительность некоторых мембранных установок достигла нескольких десятков тысяч м3 опресненной воды в сутки [2-4].
В химической и нефтехимической промышленности мембранные методы применяют для разделения смесей высокомолекулярных и низкомолекулярных соединений, азеотропных смесей, для выделения гелия и водорода из природных газов, кислорода из воздуха и т.п. [4-5].
В пищевой промышленности - для получения высококачественного сахара, пастеризации пива, стабилизации виноградных вин, переработки и консервирования молока с целью получения основных молочных продуктов; консервирования фруктовых и овощных соков и т.п. [2; 4; 6-7].
В биотехнологии и медицинской промышленности - для выделения и очистки биологически активных веществ, вакцин, ферментов и т.п.; в пищевой промышленности - для концентрирования фруктовых и овощных соков, молока, получения высококачественного сахара и т. п. [2; 4].
Наиболее широкое применение мембранные процессы находят при обработке воды и водных растворов, очистке сточных вод [2; 4; 8-9].
Весьма перспективно применение полупроницаемых мембран для проведения экологического мониторинга, осуществления контроля и прогноза за состоянием окружающей среды, при освоении космоса и вод мирового океана.
Ведутся работы по созданию синтетических мембран, способствующих воспроизведению некоторых из фотохимических реакций. Происходящих в зеленых растениях. При этом главная задача состоит не столько в получении углеводов, протеинов, жиров, нуклеиновых кислот, производимых при участии природных мембран, сколько в получении водорода и других «энергетических» веществ. Эти мембраны быть способны с помощью энергии солнечного света расщеплять воду и производить водород, который можно накапливать и использовать в качестве топлива [2; 4].
Дальнейшая широкая реализация мембранных процессов связана с необходимостью разработки аналитических и графоаналитических методов расчета аппаратуры для их осуществления, разработки нормалей, номограмм, стандартов, справочных и систем для решения конкретных технологических задач, а также создания методов оптимизации мембранной аппаратуры с применением электронно-вычислительной техники [2; 4].
Конечно, краткий перечень основных направлений использования мембранных методов далеко не исчерпывает всех возможных областей их применения.
Расчеты и накопленный большой фактический материал показывают, что применение полупроницаемых мембран может дать значительный экономический эффект в сложившихся традиционных производствах, открывает широкие возможности для создания принципиально новых, простых, малоэнергоемких и экологически чистых технологических схем (особенно при сочетании с такими широко распространенными методами разделения, как ректификация, адсорбция, экстракция и др.).
94
Однако еще не решены все проблемы исследования мембран и мембранных процессов. Актуальной задачей и сейчас остается разработка теории направленного получения мембран с заранее заданными свойствами и технологический расчет мембранных процессов и аппаратов.
Целью данной работы явилось всестороннее изучение сущности мембранных процессов разделения через знакомство с основными публикациями в периодических научных изданиях, ознакомление с учебно-методической литературой по данной тематике.
Мембранная технология - это одно из новых направлений развития химических технологических процессов, целью которых является разделение жидких и газовых смесей с помощью полупроницаемых мембран.
Процессы мембранного разделения смесей осуществляются с помощью полупроницаемых мембран. Движущей силой мембранного процесса может быть: градиент химического (для незаряженных частиц потока) или электрохимического (для заряженных частиц потока) потенциала, а также градиент фактора, определяющего скорость данного процесса (давление, температура и т.д.). Процессы мембранного разделения характеризуются параметрами: проницаемостью и селективностью. Основные мембранные методы разделения: обратный осмос, ультрафильтрация, первопарация, диализ, электродиализ, диффузионное разделение газов [1; 4].
Механизм переноса атомов, молекул или ионов различных веществ через полупроницаемые мембраны может быть объяснен следующими теориями [1].
Теория просеивания предполагает, что в полупроницаемой мембране существуют поры, размеры которых достаточны для того, чтобы пропускать растворитель, но слишком малы для того, чтобы пропускать молекулы или ионы растворенных веществ.
Теория молекулярной диффузии основана на неодинаковой растворимости и на различии коэффициентов диффузии разделяемых компонентов в полимерных мембранах.
Теория капиллярно-фильтрационной проницаемости основана на различии физико-химических свойств граничного слоя жидкости на поверхности мембраны и раствора в объеме [1].
Основными факторами, существенно влияющими на скорость и селективность мембранных процессов разделения, являются: концентрационная поляризация, рабочее давление и температура, гидродинамические условия внутри мембранного аппарата, природа и концентрация разделяемой смеси [1].
Мембраны должны удовлетворять следующим основным требованиям, а именно, обладать: высокой разделяющей способностью (селективностью); высокой удельной производительностью (проницаемостью); химической стойкостью к действию среды разделяемой системы; механической прочностью, достаточной для их сохранности при монтаже, транспортировании и хранении. Кроме того, свойства мембраны в процессе эксплуатации не должны существенно изменяться. Для изготовления мембран применяют различные полимеры (ацетаты целлюлозы, полиамиды, полисульфон и др.), керамику, стекло, металлическую фольгу и др. В зависимости от механической прочности используемых материалов мембраны подразделяют на: жидкие, уплотняющиеся (полимерные), с жесткой структурой, пористые, непористые (диффузионные) [1].
При изучении и анализе любого мембранного процесса необходимо учитывать три основных фактора и их взаимосвязь: 1) структуру мембраны по толщине (пористая, непористая, изотропная); 2) физико-химические свойства разделяемой системы (для растворов очень важно учитывать их основные термодинамические свойства); 3) взаимодействие разделяемой смеси с материалом мембраны. Если хотя бы один из перечисленных факторов не будет учтен, можно допустить принципиальную ошибку при разработке модели механизма того или иного мембранного процесса [1; 4].
В зависимости от вида основной движущей силы процесса различают следующие типы мембранных процессов: баромембранные процессы, диффузионно-мембранные процессы, электромембранные процессы, термомембранные процессы.
Баромембранные процессы обусловлены градиентом давления по толщине мембран, в основном полимерных, и используются для разделения растворов и коллоидных систем при 5-30 °С. К баромембранным относят следующие процессы: обратный осмос, ультрафильтрация, микрофильтрация [1].
Диффузионно-мембранные процессы обусловлены градиентом концентрации или давления по толщине пористых либо непористых мембран на основе полимеров или материалов с жесткой структурой. Их используют для разделения газовых и жидких смесей.
Электромембранные процессы обусловлены градиентом электрического потенциала по толщине мембран. Среди электромембранных методов наибольшее практическое применение нашел электродиализ - разделение растворов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его перегородки-мембраны.
Термомембранные процессы - градиентом температур по толщине пористой мембраны на основе полимеров или материалов с жесткой структурой. В настоящее время наиболее полно разработан процесс мембранной дистилляции. Мембранную дистилляцию целесообразно использовать для решения следующих основных задач: концентрирование и обессоливание водных растворов электролитов; опреснение морской воды; получение воды для подпитки паровых котлов и т. п; получение особо чистой воды и апирогенной воды для медицинских целей. Процесс мембранной дистилляции проводят практически при атмосферном давлении, поэтому аппараты для этого процесса могут изготовляться из дешевых полимерных материалов. Мембраны в аппаратах для мембранной дистилляции длительное время работают без заметного их загрязнения [1].
Для успешного решения конкретных технологических задач, связанных с применением мембранных процессов необходимо проведение расчета мембранных установок и аппаратуры. Полный расчет включает в себя проведение технологического, гидравлического и механического отчетов с применением современного электронного программного обеспечения.
Современные аппараты для мембранных процессов подразделяют на четыре основных типа, различающихся способом укладки мембран: аппараты с плоскими мембранными элементами; с трубчатыми мембранными элементами; с мембранными элементами рулонного типа; с мембранами в виде полых волокон. Но необходимо учитывать, что для каждого конкретного процесса разделения следует подбирать аппарат такой конструкции, которая обеспечивала бы наиболее выгодные условия проведения процесса.
Литература
1. Калекин, В.С. Гидравлика и теплотехника: учеб. пособие [Текст] / В.С. Калекин, С.Н. Михайлец. Омск: ОмГТУ, 2007. 320 с.
2. Абдуллин, И.Ш. Композиционные мембраны [Текст] / И.Ш. Абдуллин, Р.Г. Ибрагимов, В.В. Парошин, О.В. Зайцева // Вестник Казанского технологического университета. 2012. Т. 15. № 15. С. 67-75.
3. Степанов, С.В. Исследования по биомембранной очистке и обессоливанию сточных вод Сызранского НПЗ [Текст] / С.В.Степанов, Ю.Е.Сташок, Н.В. Ноев // Вестник СГАСУ. Градостроительство и архитектура. 2012. № 1. С. 55-58.
4. Хванг, С.-Т. Мембранные процессы разделения: пер. с англ. [Текст] / С.-Т. Хванг, К. Каммермейер / Под ред. Проф. Ю.И. Дытнерского. М.: Химия, 1981. 464 с.
5. Колзунова, Л.Г. Мембранные методы разделения веществ и новые мембраны для этих процессов [Текст] / Л.Г.Колзунова, В.П.Гребень, М.А.Карпенко, И.Г. Родзик // Вестник Дальневосточного отделения Российской академии наук. 2009. № 2. С. 13-17.
95
6. Лазарев, С.И. Влияние давления на формирование динамических мембран при ультрафильтрации водных растворов дрожжевых и спиртовых производств [Текст] / С.И.Лазарев, В.Л. Головашин // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2011. Т. 16. № 1. С. 227-229.
7. Остроухов, Д.В. Ультрафильтрация - революция в производстве мягких сыров [Текст] // Сыроделие и маслоделие. 2010. № 2. С. 42-43.
8. Андрианов, А.П. Мембранные методы очистки поверхностных вод [Текст] / А.П.Андрианов, Д.В.Спицов, А.Г.Первов, Е.Б. Юрчевский // Водоснабжение и санитарная техника. 2009. № 7. С. 29-37.
9. Спицов, Д.В. Использование мембранных установок для улучшения качества водопроводной воды в городских зданиях // Интернет-Вестник ВолгГАСУ. 2011. № 4 (19). С. 10.
Хентов В.Я
Профессор, доктор химических наук, Южно-Российский государственный политехнический университет имени М.И.
Платова
СВЯЗЬ ПРОЧНОСТНЫХ ХАРАКТЕРИСТИК МЕТАЛЛОВ С ТЕМПЕРАТУРОЙ ДЕБАЯ
Аннотация
Показано, что такие прочностные характеристики металлов, как модуль упругости Юнга, модуль сдвига, сжимаемость и энергия активации разрушения металлов, тесно связаны с температурой Дебая металлического элемента.
Ключевые слова: модуль упругости Юнга, модуль сдвига, сжимаемость элементов, прочность проволоки на разрыв, энергия активации разрушения металлов, температура Дебая.
Khentov V.Ya
South-Russian State Polytechnic University named after M. Platov COMMUNICATION STRENGTH CHARACTERISTICS METAL DEBYE TEMPERATURE
Abstract
It is shown that the strength properties of metals such as Young's modulus, shear modulus, compressibility, and the activation energy offracture of metals are closely related to the Debye temperature of the metal element.
Keywords: Young's modulus, shear modulus, compressibility elements breaking strength of the wire, the activation energy of fracture of metals, the Debye temperature.
Прочность является важнейшим физическим свойством твердого тела. Представления о прочности тесно связаны со спецификой межатомного и межмолекулярного взаимодействия. Рассчитанные с учетом этого значения прочности заметно превосходят реальную технологическую прочность материалов, что связывают с дефектами кристаллической решетки и наличием микротрещин [1, 2]. Особый интерес вызывает разработка теории разрушения кристаллических твердых тел. Процесс разрушения носит кинетический и статистический характер, а также является многостадийным. Вместе с тем, теория разрушения должна базироваться на физических и химических свойствах твердого тела. В ряде работ [3, 4] была установлена связь физических свойств твердого тела с температурой Дебая. В настоящей работе приведены корреляционные зависимости прочностных характеристик твердого тела с температурой Дебая металла [5]. Основные корреляционные уравнения представлены в табл. 1
Таблица 1 - Корреляционные зависимости, коэффициенты корреляции R
Прочностной параметр Корреляционная зависимость R Металлы
1 2 3 4
Вектор Бергерса b [6] b=0,2055-0,0001© 0,8 6 Pb, Al, Ag,Cu, Ni, а-Fe
b=0,2078-0,0001© 0,9 2 Pb, Ag,Cu, Ni, а-Fe
Температурный коэф-фициент линейного расширения а, 10"6 оС-1 [7] а=710,683-20,391© 0,9 4 Fe, Cu, Ni, Sn, Pb, Ag, Zn
Коэффициент Пуас-сона ц [7] ц=1112,7-2339,2© 0,7 4 Al, Be, V, Bi, W, Gd, Hf, Dy, Fe, Au, In, Ir, Y, Cd, Co, La, Li, Mg, Cu, Mo, Ni, Nb, Sn, Os, Pd, Pt, Pb, Ag, Ta, Ti, Cr, Zr, Zn
Сжимаемость элемен-тов кЛ0ь [8] *=528,406-85,261© 0,9 3 Fe, Cd, Mn, Cu, Mo, Ni, Sn, Pb, Ag, Tl
1 2 3 4
Предел прочности, ав, МПа [7] ав=163,53+0,66© 0,8 7 V, Fe, Au, Y, Cd, Ca, Co, Mg, Cu, Ni, Nb, Sn, Pd, Pt, Re, Pb, Ag, Sc, Rh, Ru
Твердость по Бринел-лю, НВ, МПа [7] НВ=-749,06+4,82© 0,8 3 V, Bi, Fe, Au, Ir, Co, Cu, Mo, Ni, Nb, Sn, Pd, Pt, Re, Ru, Ag, Sc,
Энергия активации разрушения металла, Еа, кДж/моль (рассчитана по данным [9]) Еа=2,820+0,055© 0,9 9 Al, Cd, Fe, Sn, Pb
Истинная теоретичес-кая прочность, Sro, ГПа [11] S^-6,777+0,0731© 0,9 5 Fe, Ni, Cu, Ti, Ag, V, Mo, Cd, Na, K
Характеристика кри-тической деформа-ции* ef [10] ej=0,4794-0,0003© 0,8 9 Fe, W, Mo, Nb, V
Плотность энергии связи атомов p0 в объеме одного моля V0 веществаp0=QJV0, где V0=A/D, А -атомная масса, D - плотность [10] р0=-10,543+0,0976© 0,9 8 Al, Cr, Zn, Cd, K, Na
Модуль сдвига (экспе-римент) G, Гпа [10] G=-13,233+0,1808© 0,9 4 Fe, Au, Cr, Ti, Zn, K, Na
96