К обоснованию способа фракционирования зерновых материалов Текст научной статьи по специальности «Механика»

Научная статья на тему 'К обоснованию способа фракционирования зерновых материалов' по специальности 'Механика' Читать статью
Pdf скачать pdf Quote цитировать Review рецензии WOSВАКAGRIS
Авторы
Журнал
Выпуск № 1 / том 40 /
Коды
  • ГРНТИ: 30 — Механика
  • ВАК РФ: 01.02.00
  • УДK: 531/534
  • Указанные автором: УДК:62-784.4:628.511

Статистика по статье
  • 38
    читатели
  • 14
    скачивания
  • 0
    в избранном
  • 0
    соц.сети

Ключевые слова
  • ГИДРОСЕПАРАЦИЯ
  • ЭФФЕКТ МАГНУСА
  • ФРАКЦИИ
  • ЭЛЛИПСОИД
  • ЗЕРНОВКА
  • ТРАЕКТОРИЯ
  • СИЛА ЖУКОВСКОГО
  • ГИДРОПОТОК
  • ОРИЕНТАЦИЯ
  • HYDROSEPARATION
  • MAGNUS EFFECT
  • FRACTION
  • ELLIPSOID
  • WEEVIL
  • THE TRAJECTORY
  • ZHUKOVSKY POWER
  • HYDROSTREAM
  • ORIENTATION

Аннотация
научной статьи
по механике, автор научной работы — ЗЛОЧЕВСКИЙ ВАЛЕРИЙ ЛЬВОВИЧ

Гидросепарация зерновых материалов и продуктов размола широко используется в различных отраслях производства. При этом свойства отдельных зерновок и плотность жидкости могут варьировать, что в значительной мере влияет на точность процесса разделения на фракции. Повышение технологической эффективности фракционирования зерновых материалов посредством воздействия на них неравномерных аэрогидромеханических структур обеспечивает условия стабилизации, ориентации и вращения зерновок, что приводит к более полному выявлению их физико-механических свойств. На основе законов теоретической механики сформулированы как задача получения фракций зерновых материалов, так и методы ее практического решения. Определены условия движения и закручивания зерновки (эллипсоида вращения) посредством движения жидкости во вращающейся трубке. Получены дифференциальные уравнения, определяющие условия вращения зерновки от перемещения вдоль оси трубки. Выявлены условия действия силы Жуковского на зерновку при вводе ее в прямолинейный гидропоток. Проведенные расчеты на ЭВМ определили траектории движения зерновок, формирование фракций с учетом их свойств и силы Жуковского и показали возможность повышения технологической эффективности при формировании фракций.

Научная статья по специальности "Механика" из научного журнала "Техника и технология пищевых производств", ЗЛОЧЕВСКИЙ ВАЛЕРИЙ ЛЬВОВИЧ

 
close Похожие темы научных работ
Читайте также
Читайте также
Читайте также
Читайте также
Читайте также
Читайте также
Рецензии [0]

Похожие темы
научных работ
по механике , автор научной работы — ЗЛОЧЕВСКИЙ ВАЛЕРИЙ ЛЬВОВИЧ

Текст
научной работы
на тему "К обоснованию способа фракционирования зерновых материалов". Научная статья по специальности "Механика"

ISSN 2074-9414. Техника и технология пищевых производств. 2016. Т. 40 № 1 УДК 62-784.4:628.511
К ОБОСНОВАНИЮ СПОСОБА ФРАКЦИОНИРОВАНИЯ ЗЕРНОВЫХ МАТЕРИАЛОВ
В.Л. Злочевский
Дата поступления в редакцию: 22.01.2016 Дата принятия в печать: 08.02.2016
ФГБОУ ВО «Алтайский государственный технический университет им.. И. И. Ползунова», 656038, Россия, Алтайский край, г. Барнаул, пр. Ленина, 46
e-mail: zlvl@mail.ru
Гидросепарация зерновых материалов и продуктов размола широко используется в различных отраслях производства. При этом свойства отдельных зерновок и плотность жидкости могут варьировать, что в значительной мере влияет на точность процесса разделения на фракции. Повышение технологической эффективности фракционирования зерновых материалов посредством воздействия на них неравномерных аэрогидромеханических структур обеспечивает условия стабилизации, ориентации и вращения зерновок, что приводит к более полному выявлению их физико-механических свойств. На основе законов теоретической механики сформулированы как задача получения фракций зерновых материалов, так и методы ее практического решения. Определены условия движения и закручивания зерновки (эллипсоида вращения) посредством движения жидкости во вращающейся трубке. Получены дифференциальные уравнения, определяющие условия вращения зерновки от перемещения вдоль оси трубки. Выявлены условия действия силы Жуковского на зерновку при вводе ее в прямолинейный гидропоток. Проведенные расчеты на ЭВМ определили траектории движения зерновок, формирование фракций с учетом их свойств и силы Жуковского и показали возможность повышения технологической эффективности при формировании фракций.
Гидросепарация, эффект Магнуса, фракции, эллипсоид, зерновка, траектория, сила Жуковского, гидропоток, ориентация
Введение
Разделение зерновых материалов по комплексу свойств, проявляемых в процессе аэрогидромеханического воздействия на них, широко известно [1, 2]. При этом следует отметить, что разработка неравномерных аэрогидромеханических структур с целью стабилизации, ориентации и вращения зерновки (эллипсоида вращения) приводит к значительному повышению эффективности разделения зерновых материалов. Широкое применение процессов дробления при переработке зерна в агропромышленном комплексе и материалов в промышленных производствах [3-5] определяет состав, качество и все возрастающий их объем, который необходимо подвергать разделению и классификации [6,7].
Целью данной работы является повышение технологической эффективности фракционирования в процессе гидросепарации зерновых материалов.
Постановка задачи
Гидросепарация зерновых материалов осуществляется на основе гидромеханического воздействия на частицу определенной формы. Несущей средой для материала (рис. 1) является вода.
Предлагаемый способ включает приемник материала (В), заполненный водой, уровень которого поддерживается постоянным. В нем имеется ряд круглых отверстий, в которых пропущены вертикальные трубки, вращающиеся с заданной угловой скоростью П. Нижняя часть каждой трубки проходит через круглое отверстие в верхней части прямоугольного лотка (В). На боковой стороне лотка имеется секционный приемник (ЕЕ) для формирования фракций материала.
Рис. 1. Схема процесса гидросепарации
Частицы, подаваемые в приемник (В), вместе с жидкостью проходят через трубки, где каждая приобретает некоторую угловую скорость, зависящую от индивидуальных параметров. При выходе из трубок они попадают в равномерный поток воды, заполняющий лоток и имеющий заданную скорость их. Взаимодействие вращающейся частицы с этим потоком приводит к боковому смещению траектории движения частицы, которая существенно зависит от ее вращения (эффект Магнуса). Различие в траекториях позволяет сепарировать зерновой материал, группируя его по фракциям. В дальнейшем каждую частицу будем рассматривать как эллипсоид вра-
щения с большой полуосью Ь, малой полуосью а и плотностью р. Считаем данными плотность воды ро и коэффициент динамической вязкости
2Ь, для которого Мгз имеет такое значение, что и для эллипсоида. Для цилиндра радиуса а„ формулы (3), (4) приводят к выражению
Выбор конструктивных параметров
Расход жидкости в каждой трубке, соответственно производительность процесса, зависит от вертикальной средней скорости и2 движения жидкости в трубке. Эта скорость при установившемся течении будет постоянной. Примем плотность частиц р, близкую к плотности воды ро. Тем самым частица будет иметь в трубке скорость близкую к иг. Приняв уровень воды Н заданным, можно получить в первом приближении скорость и2, используя интеграл Бернулли:
Ров 2 д р0д 2д
(1)
М2з = (6)
Из равенства значений (5) и (6) для различных значений параметра Я/а получены следующие значения величины а*/а:
Я/а 3 2,5 2 1,7 1,4
а*/а 0,82 0,82 0,83 0,84 0,85
Отсюда видно, что при различных значениях а малой полуоси можно принять с запасом
а*= 0,8 •a
(7)
где координата 20, давление воды Р0 и скорость воды и0 - для частиц воды на свободной поверхности жидкости в приемнике (В); 21, Р1, - аналогичные параметры в нижней части трубки.
Величина Р1 зависит от условий течения жидкости в лотке. Полагая в (1) Р1 = Р0, получим наибольшую возможную скорость движения воды и частиц в трубке. Таким образом, обозначая Н = 20 - 21, получим
и2 = Д^Я. (2)
Вращательное движение частицы в трубке
Вращение трубки с заданной угловой скоростью П приводит к начальному вращению жидкости в трубке, а затем вращению частиц в этой жидкости. С достаточной степенью точности будем считать, что эллипсоид (зерновка) ориентирован в жидкости так, что его большая ось 2з параллельна оси 02 трубки. При этом она максимально совпадает с осью 02. Покажем ориентацию эллипсоида (рис. 2), имеющего в текущий момент времени / угловую скорость ю, при этом в начале движения (при входе в трубку) угловая скорость равна ю0 = 0. Заметим, что вращательная скорость трубки П ■ И значительно больше осевой скорости которую имеет эллипсоид и жидкость.
В элементарном слое толщиной й2з на эллипсоид действуют силы вязкости жидкости, момент которых относительно оси О2з имеет известное выражение
ёМгз = 4- и • ц • (П - ш) • й!3. (3)
Суммарный момент сил вязкости, действующий на эллипсоид, получим интегрированием по его высоте:
Шз = $*вйМгз ; (4)
= 4-я • И2(П-ш) • 2Ъ • 1),
^ ^ (5)
где Ш2 = И2/а2 - 1.
Для упрощения расчетов введем в рассмотрение эффективный радиус а„- радиус цилиндра высотой
и пользоваться более простой формулой (6).
Рис. 2. Ориентация частицы (эллипсоида вращения) в трубке: оа = а, оЬ = Ь
Дифференциальное уравнение вращения твердого тела вокруг неподвижной оси в данном случае принимает вид
]2^ = Мг (8)
или (9)
где осевой момент инерции и постоянный коэффициент к для конкретной частицы равны
}2з = 2/5 • а2 •М, (10)
Интегрируя уравнение (9) при начальной угловой скорости о)0 = 0, получим закон изменения угловой скорости:
ш = П ■
1 ~exp(-k—)
Jz3
(12)
Отсюда следует, что ш ^П при 1^-да. Примем приближенно закон движения центра частицы по вертикали в виде
Z= U„ • t.
(13)
Выражения (12) и (13) позволяют представить угловую скорость о) в виде функции от перемещения 2:
-к г .
Ш = П ■
1 ~ exP(7^")
uzJz3
(14)
Задавшись некоторым значением ш = шг на выходе из трубки, можно получить необходимую для этого высоту трубки:
Z1 = h = U-^\ n(
n


(15)
Сепарация частиц в лотке
Все частицы при выходе из трубки (в нашем случае) имеют одинаковую вертикальную скорость иг центра масс, но различные значения угловой скорости ш1. С такими же параметрами движения они попадают в однородное течение жидкости в лотке с заданной горизонтальной скоростью их.
Примем начало координат в точке О1 (см. рис. 1) с прежним направлением координатных осей. Будем рассматривать только первоначальный участок движения, где вращение частиц не успевает существенно уменьшиться. Здесь же в наибольшей степени проявляется эффект изменения их траекторий движения, отличающихся величиной о^при определенном сохранении их ориентации. На частицу действует вертикальная сила тяжести Р = Мд, выталкивающая сила Рв = Мвд, где Мв -масса жидкости, вытесненная частицей. Кроме этого, действует сила гидродинамического сопротивления Рс и сила Жуковского Рж. Последняя определяется вращением частицы в жидкости и дает эффект Магнуса. Сила Рс направлена противоположно скорости частицы относительно потока жидкости Ц. и по модулю прямо пропорциональна квадрату этой же скорости:
% = -к- Уг- %. (16)
Здесь к - постоянный коэффициент, а проекции скорости Ц. на оси координат имеют вид
Vrx X ■
Ur
,Vry = Y,Vrz=Z.
(17)
В этих выражениях производные по времени от координат X, У,1 — проекции абсолютной скорости частицы. Коэффициент к в (16) можно найти для каждой частицы, зная ее скорость витания 1^ит в жидкости. Согласно смыслу этой скорости, при-
равняем в случае равновесия частицы, действующие на нее силы Р, Рв, : М • д-Мв - д =К • 1£Ит.
_ (м-мВитУд
Отсюда имеем К =-^-.
^вит
Таким образом, модуль силы сопротивления получит выражение
(18)
где Уг = ^(Х-их)2+У2+г2. (19)
Проекции вектора этой силы на оси координат равны
Р — _Z7
Гсх гс
(Х-их) vr '
Fcy = -Fc^-,Fcz = -Fc^.(20)
Рассмотрим силу Жуковского направление которой получим, повернув вектор относительной скорости частицы на угол 90о по направлению ее вращения. Согласно этому, повернув составляющую Угх скорости Ц., получим направление силы /Жу. Аналогично, повернув Угу на угол 90о, получим направление силы /жх.В каждом плоском сечении частицы, параллельном плоскости Оху, на нее действует элементарная сила Жуковского <1Рж , модуль которой равен
d/ж = ро •Г Vr • dZ.
(21)
Здесь Г - циркуляция скорости по контуру кругового сечения частицы, равная
Г = (ш • г) • 2 • п • г,
(22)
а г - радиус этого сечения частицы.
Суммарная сила равна интегралу по высоте частицы:
Рж = 2- п • Уг ■ р0 • ш • Д г2 аг = 2р0 • ш • Уг. • Ш, (23)
где Ж - объем частицы; р0 - плотность воды.
Направление вращения (рис. 3) частицы отмечено круговой стрелкой, где о> - ее мгновенная угловая скорость при вращении вокруг своей большой оси, которая параллельна оси Огг. Проекции силы Жуковского, согласно указанному выше, равны
Р? = 2-р0-ш-Ш-Угу =2-р0-ш-Ш-у, Р^ = -2-р0-ш-Ш-Угх = 2-р0-ш-Ш(их-х) Р7ж = 0.
/ щ
Рис. 3. Гидропоток и частица в горизонтальной плоскости
Окончательно дифференциальные уравнения движения центра масс частиц примут вид
М • Х= + 2р0 • ш • W • Y,
Vz
М • Y=-Fci- + 2p0^ ш • W^ (Ux-X), (24)
Vr
М • Z = M-g-MBg-Fc^.
vr
Здесь M — масса частицы, а сила сопротивления Fc и относительная скорость Vr имеют переменные выражения (20) и (21). Заметим еще, что угловая скорость ш частицы будет уменьшаться при ее движении в лотке. Чтобы получить ш = o>(t), составим дифференциальное уравнение вращения частицы вокруг ее большой оси такого же вида, что и (9). В данном случае следует положить П = 0в формуле (3) для момента сил сопротивления
dMZs = -4 • л • ß • г2 • ш • dZ3. (25)
Затем находим суммарный момент М2з = -4 • п • ß • ш /_ввг2 • d.ZZ3 = -4 • ß • ш • W. (26)
Дифференциальное уравнение относительно ш примет вид
Jz3~=~4^ V W^ (о. (27)
Интегрирование уравнения (27), а затем и уравнений (24) позволяет найти кинематические уравнения движения центра масс каждой частицы:
X = X(t),Y = Y(t),Z = Z{t).
Последние позволяют построить траектории движения этих центров масс. При интегрировании должны быть использованы следующие условия движения частицы:
t = 0; Xo = Yo=Zo = 0; X0 = Y0 = 0;
Z0 = Uz; ш0 =
Расчет движения различных частиц был произведен на ЭВМ. На экран выводились как траектории центра масс частиц, так и значения их соответствующих параметров.
Рис. 4. Траектория частиц при П = 800 рад/с
На рис. 4 показаны траектории четырех частиц, имеющих малую полуось эллипсоида вращения а1, отличающуюся для этих частиц. Большая полуось в каждой частицы, скорость витания 1^ит и плотность р были одинаковы. Частицы были закручены в трубке, имеющей угловую скорость П = 800 рад/с. При этом на выходе из трубки частицы имели существенно различные угловые скорости, соответственно ш^, 0)°, с которыми входят в равномерный горизонтальный поток, движущийся в лотке со скоростью их = 2,0 м/с. После этого движение их происходит из точки О1 в трехмерном пространстве и наблюдается расхождение траекторий в горизонтальной плоскости 01XY. Траектории заканчиваются на боковой стенке лотка, расположенной на расстоянии 0,1 м от места ввода частиц. Здесь расхождение траекторий составляет примерно 0,15 м. В лотке угловые скорости вращения частиц уменьшаются, принимая значения ш1:ш2,ш3,ш4 на стенке. При этом вертикальные перемещения зерновок 21,22,23,24 являются незначительными.
На рис. 5 показаны траектории тех же частиц при изменении только угловой скорости П трубки, которая принята в два раза меньше. Согласно этому сила Жуковского будет меньше, как и меньше интенсивность отклонения траекторий частиц от направления вектора скорости их жидкости. При этом расхождение траекторий также будет значительным, но снижается определенность попадания той или иной частицы в заданное место на стенке.
Из анализа принятой модели можно констатировать, что от скорости витания частиц в пределах от 71вит = 0,1 м/с до 74вит = 0,16 м/с при их = 2,0 м/с, П = 800 рад/с, a = 0,007 м, Ь = 0,0024 м процесс сепарации не представляет практического интереса.
Заключение
На основании сказанного следует, что данный подход может эффективно использоваться для целей обогащения, сепарации различных зерновых материалов на фракции в различных сферах производственной деятельности. Существенную роль при этом играют вопросы, связанные с интенсификацией динамического взаимодействия частиц с жидкостями.
Список литературы
1. Злочевский, В.Л. Совершенствование конструкции циклона // Экология промышленного производства. - 2013. -№ 3. - С. 16-19.
2. Ахметов, Ю.М. Исследование процесса сепарации газожидкостного потока в вихревой трубе / Ю.М. Ахметов, А.В. Жернаков, А.В. Целищев // Вестник УГАТУ. - 2011. - Т. 15. - № 4 (44). - С. 120-126.
3. Архипов, В.А. Численное исследование движения капли в потоке вращающейся вязкой жидкости / В.А. Архипов, А.С. Ткаченко, А.С. Усанина // ИФЖ. - 2013. - Т. 86. - № 3. - С. 534-541.
4. Стафеев, А.А. Обогащение железной руды с применением технологии магнитной сепарации // Сталь. - 2011. -№ 10 - С. 7-9.
5. Горячев, Б.Е. Исследование кинетики флотации частиц, изготовленных из таблетированных твердых тел / Б.Е. Горячев, А. Л. Николаев // Горный информационно-аналитический бюллетень. - 2011. - № 1. - С. 137-145.
6. Lastra, R, Price, J, Cabri, L J, Rudashevsky, N S, Rudashevsky, V N and McMahon, G, 2005. Gold characterization of a sample from Malartic East (Québec) using concentration by hydroseparator, in Proceedings International Symposium on the Treatment of Gold Ores (eds:G Deschênes, D Houdin and L Lorenzen), pp 17-29 (The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal).
7. Cabri, L J, Hoy, D, Rudashevsky, N S and Rudashevsky, V N, 2007. Mineralogical evaluation of Au-Sb-As mineralization from the AD-MW zones, Clarence Creek property, New Brunswick, in Proceedings Canadian Mineral Processors 39th Annual Meeting, pp 517-533 (The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal).
FRACTIONATION OF GRAIN MATERIALS: METHOD JUSTIFICATION
V.L. Zlochevskiy
Polzunov Altai State Technical University, 46, Lenin prospect, Barnaul, Altai Krai, 656038, Russia
e-mail: zlvl@mailru
Received: 22.01.2016 Accepted: 08.02.2016
Hydroseparation of grain materials and products of grinding are widely used in various industries. The properties of individual grains and the density of the fluid can vary, which greatly affects the accuracy of the process of fraction separation. The raise of technological efficiency of grain material fractionation by exposure to non-uniform aerohydromechanichal structures provides stabilization conditions, orientation and rotation of grains, leading to a more complete identification of their physico-mechanical properties. Basing on the laws of theoretical mechanics formulated are both the problem of obtaining grain material fractions, and the methods for its practical solution. The conditions of weevil movement and twisting (ellipsoid of revolving) have been established by means of a fluid movement in the rotating tube. Differential equations that determine the conditions of rotation of grains due to moving along the axis of the tube have been formulated. The conditions of Zhukovsky power action on weevil when entering a straight hydraulic flow have been determined. The calculations carried out with a computer have determined the trajectories of grain movement, and the formation of fractions regarding their properties and Zhukovsky power and have shown the possibility to improve the technological efficiency when forming the fractions.
Hydroseparation, Magnus effect, fraction, ellipsoid, weevil, the trajectory, Zhukovsky power, hydrostream, orientation
References
1. Zlochevskiy V.L. Sovershenstvovanie konstruktsii tsiklona [Improvement of a design of a cyclone]. Ekologiya promysh-lennogoproizvodstva [Industri Akhmetov Yu.M., Zhernakov A.V., Tselishchev A.V. Issledovanie protsessa separatsii gazozhidkost-nogo potoka v vikhrevoy trube. al ecology], 2013, no. 3, pp. 16-19.
2. Akhmetov Yu.M., Zhernakov A.V., Tselishchev A.V. Issledovanie protsessa separatsii gazozhidkostnogo potoka v vikhrevoy trube [Investigation of the separation process, the gas-liquid flow in the vortex tube]. Vestnik UGATU, 2011, vol. 15, no. 4, pp. 120-126.
3. Arkhipov V.A., Tkachenko A.S., Usanina A.S. Chislennoe issledovanie dvizheniya kapli v potoke vrashchayushcheysya vyazkoy zhidkosti [Numerical study of the drop in the flow of viscous liquids]. Inzhenerno-fizicheskiy zhurnal [Journal of Engineering Physics and Thermophysics], 2013, vol. 86, no. 3, pp. 534-541.
4. Stafeev A.A. Obogashchenie zheleznoy rudy s primeneniem tekhnologii magnitnoy separatsii [Enrichment of iron ore using magnetic separation technology]. Stal' [Steel], 2011, no. 10, p. 7-9.
5. Goryachev B.E., Nikolaev A.L. Issledovanie kinetiki flotatsii chastits, izgotovlennykh iz tabletirovannykh tverdykh tel [Investigation of the kinetics of flotation of the particles made of preformed solids]. Gornyy informatsionno-analiticheskiy byulleten' [Mining informational and analytical bulletin], 2011, no. 1, pp. 137-145.
6. Lastra R., Price J., Cabri L.J., Rudashevsky N.S., Rudashevsky V.N. and McMahon G. Gold characterization of a sample from Malartic East (Québec) using concentration by hydroseparator, in Proceedings International Symposium on the Treatment of Gold Ores (eds:G Deschênes, D Houdin and L Lorenzen), 2005, pp 17-29 (The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal).
7. Cabri L.J., Hoy D., Rudashevsky N.S. and Rudashevsky V.N. Mineralogical evaluation of Au-Sb-As mineralization from the AD-MW zones, Clarence Creek property, New Brunswick, in Proceedings Canadian Mineral Processors 39th Annual Meeting, 2007, pp. 517-533 (The Canadian Institute of Mining, Metallurgy and Petroleum: Montreal).
Дополнительная информация / Additional Information
Злочевский, В.Л. К обоснованию способа фракционирования зерновых материалов / В.Л. Злочевский // Техника и технология пищевых производств. - 2016. - Т. 40. - № 1. - С. 75-80.
Zlochevskiy V.L. Fractionation of grain materials: method justification. Food Processing: Techniques and Technology, 2016, vol. 40, no. 1, pp. 75-80 (In Russ.).
Злочевский Валерий Львович
д-р техн. наук, профессор, заслуженный изобретатель РФ, ФГБОУ ВО «Алтайский государственный технический университет им. И.И. Ползунова», 656038, Россия, Алтайский край, г. Барнаул, пр. Ленина, 46, тел.: +7 (3852) 63-15-80, e-mail: zlvl@mail.ru
Valery L. Zlochevskiy
Dr.Sci.(Eng.), Professor, Honored Inventor of the Russian Federation, Polzunov Altai State Technical University, 46, Lenin prospect, Barnaul, Altai Krai, 656038, Russia, phone: +7 (3852) 63-15-80, e-mail: zlvl@mail.ru
_ C^D _

читать описание
Star side в избранное
скачать
цитировать
наверх