Научная статья на тему 'Electrical and magnetic properties of magnetic fluid'

Electrical and magnetic properties of magnetic fluid Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
199
75
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
MAGNETIC FLUID / CHEMICAL CO-PRECIPITATION / COLLOIDAL PARTICLES / VOLUME CONCENTRATION / SPECIFIC ELECTRICAL CONDUCTIVITY / SPECIFIC ELECTRICAL RESISTANCE / MAGNETIC SUSCEPTIBILITY / QUINCE’S METHOD / МАГНИТНАЯ ЖИДКОСТЬ / ХИМИЧЕСКОЕ СООСАЖДЕНИЕ / КОЛЛОИДНЫЕ ЧАСТИЦЫ / ОБЪЕМНАЯ КОНЦЕНТРАЦИЯ / УДЕЛЬНАЯ ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ / УДЕЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ / МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ / МЕТОД КВИНКЕ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Kuvandikov Oblakul Kuvandikovich, Eshburiev Rashid Majidovich, Kayumov Hafiz Asliddin Ugli, Temirov Shohbozbek Salaydin Ugli

The magnetic fluid based on magnetite has been obtained by chemical co-precipitation method. Magnetite particles of the obtained magnetic fluid were examined by using X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The electrical conductivity and magnetic susceptibility of magnetic fluids have been studied depending on concentration of disperse phase. The variation of the electrical conductivity of the samples depending on temperature was measured. Also the relative changes of the specific electrical resistance studied depending on magnetic field. The results of the experiments were compared with existing theories.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА МАГНИТНОЙ ЖИДКОСТИ

Магнитная жидкость на основе магнетита была получена методом химического соосаждения. Частицы магнетита полученной магнитной жидкости были изучены с помощью рентгеноструктурного анализа (РА) и просвечивающей электронной микроскопии (ПЭМ). Электропроводность и магнитная восприимчивость магнитных жидкостей были изучены в зависимости от концентрации дисперсной фазы. Были измерены изменения электропроводности образцов в зависимости от температуры. Также относительные изменения удельного электрического сопротивления изучены в зависимости от магнитного поля. Результаты экспериментов сравнивались с существующими теориями.

Текст научной работы на тему «Electrical and magnetic properties of magnetic fluid»

PHYSICO-MATHEMATICAL SCIENCES

ELECTRICAL AND MAGNETIC PROPERTIES OF MAGNETIC

FLUID

Kuvandikov O.K.1, Eshburiev R.M.2, Kayumov H.A.3, Temirov Sh.S.4 (Republic of Uzbekistan) Email: Kuvandikov345@scientifictext.ru

1Kuvandikov Oblakul Kuvandikovich - Doctor of sciences in physics and mathematics, Professor, DEPARTMENT OF GENERAL PHYSICS;

2Eshburiev Rashid Majidovich - PhD in physics and mathematics, Associate Professor; 3Kayumov Hafiz Asliddin ugli - PhD student; 4Temirov Shohbozbek Salaydin ugli - student; DEPARTMENT OF NUCLEAR PHYSICS SAMARKAND STATE UNIVERSITY, SAMARKAND, REPUBLIC OF UZBEKISTAN

Abstract: the magnetic fluid based on magnetite has been obtained by chemical co-precipitation method. Magnetite particles obtained magnetic fluid were examined by

using X-ray diffraction analysis (XRD) and . The

electrical conductivity and magnetic susceptibility of magnetic fluids have been studied depending on concentration of disperse phase. The variation of the electrical conductivity of the samples depending on temperature was measured. Also relative changes of the specific electrical resistance studied depending on magnetic field. The results of the experiments were compared with existing theories.

Keywords: magnetic fluid, chemical co-precipitation, colloidal particles, concentration, specific electrical conductivity, specific electrical resistance, magnetic susceptibility, Quince's method.

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА МАГНИТНОЙ

ЖИДКОСТИ

Кувандиков О.К.1, Эшбуриев Р.М.2, Каюмов Х.А.3, Темиров Ш.С.4

(Республика Узбекистан)

Кувандиков Облакул Кувандикович - доктор физико-математических наук, профессор,

кафедра общей физики;

2Эшбуриев Рашид Мaджидович - кандидат физико-математических наук, доцент; 3Каюмов Хафиз Аслиддин угли - аспирант; 4Темиров Шохбозбек Салайдин угли - студент,

кафедра ядерной физики, Самаркандский государственный университет, г. Самарканд, Республика Узбекистан

Аннотация: магнитная жидкость на основе магнетита была получена методом химического соосаждения. Частицы магнетита полученной магнитной жидкости были изучены с помощью рентгеноструктурного анализа (РА) и просвечивающей электронной микроскопии (ПЭМ). Электропроводность и магнитная восприимчивость магнитных жидкостей были изучены в зависимости от концентрации дисперсной фазы. Были измерены изменения электропроводности образцов в зависимости от температуры. Также относительные изменения удельного электрического сопротивления изучены в зависимости от магнитного поля. Результаты экспериментов сравнивались с существующими теориями.

Ключевые слова: магнитная жидкость, химическое соосаждение, коллоидные частицы, объемная концентрация, удельная электрическая проводимость, удельное электрическое сопротивление, магнитная восприимчивость, метод Квинке.

DOI: 10.24411/2410-2865-2019-10301

1. INTRODUCTION

Magnetic fluids are colloid disperse system stabled of ferromagnetic or ferrimagnetic nanoparticles in carrier liquid. For stabilization the colloidal particles of magnetic fluid and prevention the formation of aggregates the surfactant is used [1]. Generally surfactant molecules have a polar "head" and a non-polar "tail" (or vice versa) [2]. One of the ends is adsorbed to the particle, and the other is attached to the molecules of the carrier liquid, forming a normal or reverse micelle around the particle respectively [3]. Magnetic fluids due to the uniqueness of their properties are widely used in various fields of science and technology. For example these fluids can be used in ultrasonic flaw detection, in chemical industry as catalyst for chemical reactions in engineering as sealants, for separation of

magnetic fluids are used against cancer as medicinal preparations and for testing

In order to prepare the magnetic fluid, firstly colloidal particles of this liquid were

were synthesized by the chemical co-precipitation method [7]. The salts hydrated iron chloride (FeCl3 • 6H2O), iron sulfate (FeSO4 • 1H2O) and sodium hydro-oxide ( NaOH) are the basic materials used for the synthesis. The solutions 100 ml of 0,25M FeSO • 7H2O and 100 ml of 0,5M FeCl3 • 6H2O were dissolved in 200 ml of

distilled water and filtered. 100 ml of 0.9M KOH solution was added to the filtered solution and mixed well with magnetic stirrer. Dark yellow solution instantly turns into a black suspension. The synthesized precipitate of magnetite was separated in the field of the

pH

the oleic acid as surfactant and olive oil as carrier liquid were added and mixed 3 hours until

ratio 1:6.

concentrations of nanoparticle were prepared. The volume concentrations of samples were determined using the following formula:

с = PzPaL

Pm 'Pal

Here, p, pci, pm - are density of magnetic fluid, crier liquid and magnetite[7].

TEM)

Fe3O4

was 15 nm

Fig. 1. TEM image of Fe3O4 magnetic fluid

Fig. 2. Size distribution of magnetite nanoparticles

The structural characterization and the average size of magnetite particles were determined using X-ray diffractometer PHYWE - XR 4.0 with a copper tube Cu Ka, 1 = 0.14596 nm at 35 kV and 1 mA collected in the range of 20 =20 - 70° [8]. Fig.3 shows the

XRD patterns for Fe3O4 powder. From fig.3 it can be seen that there were 6 different

peaks at 20 = 30.5°, 35.7°, 43.5°, 54.1°, 57.4°, 63 The average crystallite size D was determined from Scherer's equation:

KA

D =--(2)

pcosd

Here - K is the dimensionless shape factor of particle, it is 0,89 for magnetite, 1 - is the X-ray wavelength, p - is the half maximum intensity width of the peak the width of the half maximum intensity of the peak, 0 - the diffraction angle. The average crystallite size of the

Fe O was about 21 nm.

Fig. 2. XRD pattern of Fe3O4 powder

Because samples are liquid their electrical conductivity was measured using by the cuvette which size is 1,5x1x1,5 sm3. Fig.3. The magnetic fluid was putted in the cuvette and source started up. The copper plate (4) on both sides of the cuvette has been used as an electrode. From fig.3 It can be seen that the amperemeter and voltmeter indicate the current and voltage in the fluid. Electrical conductivity of the samples was determined using Ohm's law:

I l

G =------(3)

US

Here - I, U are the current and voltage of the fluid, l - is the distance between electrodes (1,5 sm), S - is surface of electrodes (1,5 sm2).

O ~ o

4

3

Fig. 3. Schematic image of the measure device for electrical conductivity of the magnetic fluid. 1 -variable current source, 2 - resistor (R=10 kOm), 3 - cuvette, 4 - copper electrodes, 5 - voltmeter,

6 - amperemeter

5 10 15 20 25

C (%)

Fig. 4. Concentration dependences of electrical conductivity of magnetic fluid based on the olive oil

The variation of electrical conductivity of the fluid with the increase in temperature is shown in Fig.5.

The increase in electrical conductivity with temperature is due to the rise mobility of ions in the fluid.

temperature ( C)

Fig. 5. The dependence of magnetic fluid specific electrical conductivity on temperature

Experiments show that the electrical conductivity of the magnetic fluid at little values concentration of dispersed phase (0 < 9 <0.32 %) does not depend on the magnetic field [9], however, in the case of high concentrations this law is violated. The variation of specific electrical resistance of in different concentrations fluids with the increase in magnetic field is shown in Fig.6.

Fig. 6. Magnetic field dependence of relative changes specific electrical resistance of magnetic fluid

As can be seen in Fig.6 the relative changes of specific electrical resistance of samples slightly increases in the high alteration range of magnetic field and also we can see that saturate in the high values of magnetic field.

Magnetic susceptibility of the obtained samples was measured by the help of Quince's method [10]. The Quince method is applied only to liquids. The magnetic fluid is poured into a U - shaped capillary tube and it is placed between the poles of the electromagnet. Depending on the properties of liquids the meniscus rises or falls. By changing the height of the liquid column, determined the magnetic susceptibility of the sample with the help of following formula:

X =

2 gAh

(4)

Here - g = 9,81 m/s is the acceleration of gravity, Ah - is the meniscus height, - is vacuum permeability, H - is the magnetic field strength.

The measured results are shown in Fig.7. As can be seen in Fig.7 the magnetic susceptibility of the liquid increases with the rising of the volume concentration of

magnetite. That's the reason magnetic susceptibility depend magneto - dipole interaction of the particles in the high concentrations of the hard phase of the liquid.

-¿. H-1-1-1-1-1-1-1-1-1-1-1-

0 5 10 15 20 25 C (%)

Fig. 7. The dependence of magnetic fluid magnetic susceptibility on volume concentration of magnetite

Study of crystal structure and morphology showed that the sizes of the colloidal particles of magnetic fluid are distributed log-normal law. The measured results show that the electrical conductivity of the samples depends on the magnetic field at high concentrations.

1.

'

2. K. Mittela. Mitscellobrazovanie, solubilization and microemulsii. Mittel. transl. from English., , 1980.P.85-91.

3. Rosensweig, R.E., Ferrohydrodynamics, Cambridge:Cambridge Univ. Press, 1985.P.58-60.

4. S.D. Kemkar, Milind Vaidya, Dipak Pinjari, Sammit Karekar, Sanjana Kemkar, Siddhesh Nanaware, Sanjukta Kemkar. Application of mixed colloidal magnetic fluid of single domain Fe3O4 and NiFe2O4 ferrite nanoparticles in audio speaker // Int. Journal of Engineering Research and Application. 2017. Issue 1, (Part -3) 7. Pp. 11-18.

5. Pradip Das, Miriam Colombo, Davide Prosperi. Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids and Surfaces B: Biointerfaces 174 (2019).P.42-55.

6. Fertman. V.E. Magnetic fluids. Minsk: Higher School

7. Berkovskiy, B.M., V.F. Medvedev, M.S. Krakov, Magnetic fluids. Moscow: Chemistry.1989.8-21 and 43-45.

8. Kuvandikov O.K. Magnetic and kinetic properties of condensed alloys and compounds based on transition and rare-earth metals.P.57-58.

Список литературы /References

1. Такетоми С., Тикадзуми С. Магнитные жидкости, пер. с японского. Москва-Мир, 1993 r.C.125-126

2. Миmmeла К. Мицеллообразование, солюбилизация и микроэмульсии, пер. с англ., М., 1980.C.85-91.

3. Розенцвейг, Р.Е. Феррогидродинамика, Кембридж: Кембриджский унив. Пресс, 1985.C.58-60.

4. Кемкар С.Д., Милинд Вайдья, Дипак Пинджари, Саммит Карекар, Санжана Кемкар, Сиддхеш Нанавар, Саньюкта Кемкар. Применение смешанной коллоидной магнитной жидкости из однодоменных ферритовых наночастиц Fe3O4 и NiFe2O4 в аудиодинамике.// Межд. журнал инженерных исследований и применения. 2017. Выпуск 1, (Часть -3) 7. Стр.11-18.

5. Прадип Дас, Мириам Коломбо, Давиде Проспери. Последние достижения в гипертермии магнитной жидкости для терапии рака. Коллоиды и поверхности B: биоинтерфейсы 174 (2019).C.42-55.

6. Фертман.В.Е. Магнитные жидкости справочное пособие. Минск: Вышэйшая школа. 1988.C.24-32.

7. Берковский Б.М., Медведев В.Ф., Краков М.С., Магнитный жидкости. Москва: Химия. 1989. C. 8-21 и 43-45.

8. Кувандиков О.К. Магнитные и кинетические свойства конденсированных сплавов и соединений на основе переходных и редкоземельных металлов Ташкент: Фан.2009.С57-58.

MATTER AND ENERGY Aliev A.S. (Russian Federation) Email: Aliev445@scientifictext.ru

Aliev Andrey Sabirovich - Manager, COMPANY "RUICHI", MOSCOW

Abstract: there is no vacuum in outer space. All space is filled with energies and their electromagnetic components - ether, the difference between which is the power and frequency of vibrations. Every world or sphere is material on its own plane or level of existence. Therefore, all the substance of the Cosmos can be called both matter and energy. But there is an interesting difference between what we call "matter" and "energy." This difference of nearby substances is created or determined by the difference in the frequency and power of vibrations of these substances in relation to each other. When a certain difference in the frequency and power of vibrations is achieved, a barrier or threshold appears between them, dividing these nearby substances into "matter" and "energy". And then something unusual happens. What modern physicists still can't understand. As Elena Petrovna Blavatsky said: - One thing is certain, when a person opens the eternal movement, he will be able to understand by analogy all the secrets of nature; progress is directly proportional to the resistance.

Keywords: matter, energy, sound, light, time, barrier.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

МАТЕРИЯ И ЭНЕРГИЯ Алиев А.С. (Российская Федерация)

Алиев Андрей Сабирович - менеджер, ООО "Руичи ", г. Москва

Аннотация: не существует в космическом пространстве вакуума. Всё космическое пространство заполнено энергиями и их электромагнитными составляющими -эфиром, различие которых состоит в мощности и частоте вибраций. Каждый мир или каждая сфера материальны на своём плане, или уровне бытия. Поэтому всё вещество Космоса можно назвать как материей, так и энергией. Но существует интересное различие между тем, что мы называем «материей» и «энергией». Это различие близлежащих субстанций создаётся или задаётся разницей в частоте и

i Надоели баннеры? Вы всегда можете отключить рекламу.