Научная статья на тему 'Автоматизированная система поддержки принятия решений в аварийных ситуациях'

Автоматизированная система поддержки принятия решений в аварийных ситуациях Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
602
156
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
автоматизированная система / аварийная ситуация / поддержка принятия решений / МКС / automated system / emergency / decision-making support / ISS

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Скобелев П. О., Потоцкий С. И., Матюшин М. М., Потапов В. И., Лахин О. И.

Обеспечение безопасности экипажа и живучести космического корабля является одной из самых важных задач управления полетами современных космических аппаратов. Основными условиями успешного решения этой задачи являются своевременное обнаружение и ликвидация аварийных ситуаций на борту космического аппарата. В статье сформированы цели, принципы, общая архитектура, функциональные особенности и основные требования к созданию автоматизированной системы поддержки принятия решений в аварийных ситуациях на МКС. Приведены обобщенная функциональная структура автоматизированной системы поддержки принятия решений в аварийных ситуациях, наиболее важные параметры, характеризующие аварийную ситуацию разгерметизации, рассмотрены основные форматы отображения состояния МКС и контроля деятельности экипажа при парировании разгерметизации на основе данных реального полета и при моделировании аварийной ситуации. При выборе рекомендуемых вариантов решений предложено использовать классические методы теории принятия решений, основанные на представлении процесса парирования аварийной ситуации в виде марковской сети с дискретными состояниями, и мультиагентные технологии. Рассмотрена структурная схема процесса моделирования разгерметизации, приведена структура программного обеспечения системы. В настоящее время система используется специалистами главной оперативной группы управления в целях повышения оперативности и обоснованности решений.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Скобелев П. О., Потоцкий С. И., Матюшин М. М., Потапов В. И., Лахин О. И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

AUTOMATED SYSTEM OF DECISION MAKING SUPPORT IN EMERGENCIES

Safety precautions of the crew and spacecraft casualty control are one of the most important tasks of the modern satellites mission control. The main conditions to solve this task successfully are timely detection and elimination of emergency situations aboard a spacecraft. The article forms the purposes, principles, overall architecture, functional characteristics and basic requirements to creation of an automated system of decision-making support in emergencies on the ISS. The paper describes generalized functional structure of the automated system of decision-making support in emergency situations, the most important parameters characterizing the emergency depressurization, the main formats to display the ISS status and oversight of crew activities while depressurization based on real flight data and while emergency situation simulation. When choosing the recommended solutions, it’s proposed to use classic methods of the decision-making theory based on the representation of the emergency countering process in the form of Markov network with discrete states, and multi-agent technologies. A block diagram of the depressurization modeling process is considered, there is a structure of the system software. Now the system is used by the lead operational control team in order to improve the efficiency and validity of decisions.

Текст научной работы на тему «Автоматизированная система поддержки принятия решений в аварийных ситуациях»

Программными средствами МИП реализована функция переключения с русскоязычных на соответствующие англоязычные процедуры и наоборот. Интерфейс системы реализован на русском языке.

Система оперативной корректировки бортовой документации обеспечивает автоматическое внесение переменной информации в бортовые процедуры, сформированные на базе программного комплекса разработки бортовых процедур. При этом базовые процедуры, которые хранятся в БД, не изменяются.

В процессе разработки оперативной документации происходят автоматическая регистрация документа в системе, выдача и присвоение ему порядкового номера, наименования, даты создания и даты вступления и окончания действия. Возможность выдачи ошибочных индивидуальных атрибутов при регистрации оперативных данных в условиях многопользовательского режима исключена.

Обеспечена связь между системами МИС и АСП. В системе интерфейса бортового плана полета АСП предусмотрены средства для отображения информации об используемых версиях электронной бортовой документации.

Программные средства МИС обеспечивают возможность обработки получаемых запросов от модуля БДПП системы АСП и выдачи соответствующих форматов для представления сформированной информации членам экипажа.

Созданная с использованием изложенных принципов и решений МИС позволяет достичь поставленных целей и обеспечить гибкую и своевременную поддержку запланированной согласованной деятельности членов экипажей и наземных групп сопровождения полета.

Литература

1. Соловьев В.А., Лысенко Л.Н., Любинский В^. Управление космическими полетами: учеб. пособие: в 2 ч.; [под общ. ред. Л.Н. Лысенко]. М.: Изд-во МГТУ им. Н.Э. Баумана, 2009.

2. Лотов В., Моругин А., Перенков С. Интерактивные электронные технические руководства для персонала АЭС: опыт создания, перспективы развития // CLUB 3D: Инновационное проектирование. 2011. № 4.

References

1. Solovyov V.A., Lysenko L.N., Lyubinsky V.E., Upravle-nie kosmicheskimi poletami [Spaceflights control], Part 1, Moscow, BMSTU, 2009.

2. Lotov V., Morugin A., Perenkov S., CLUB 3D: Innovatsi-onnoe proektirovanie [Club 3D. Innovative ingineering design], 2011, no. 4.

УДК 004.584+004.031.42

АВТОМАТИЗИРОВАННАЯ СИСТЕМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ В АВАРИЙНЫХ СИТУАЦИЯХ

М.М. Матюшин, начальник отдела (Ракетно-космическая корпорация «Энергия» им. С.П. Королева, ул. Ленина, 4а, г. Королев, 141070, Россия, matushin@gmail.com); С.И. Потоцкий, к.т.н., профессор, начальник отдела; В.И. Потапов, зам. начальника отдела (Донской филиал Центра тренажеростроения, Платовский просп., 101, г. Новочеркасск, 346400, Россия, s.pototsky@yandex.ru, novch-vpot@yandex.ru); П.О. Скобелев, д.т.н., президент и генеральный конструктор (Группа компаний «Генезис знаний»), ведущий научный сотрудник (Институт проблем управления сложными системами РАН); О.И. Аахин, руководитель направления в центре управления проектами (НПК «Разумные решения», Московское шоссе, 1 7, г. Самара, 443013, Россия, реЬг. scobelev@gmail. сот, lakhin@smartsolutions-123. ги)

Обеспечение безопасности экипажа и живучести космического корабля является одной из самых важных задач управления полетами современных космических аппаратов. Основными условиями успешного решения этой задачи являются своевременное обнаружение и ликвидация аварийных ситуаций на борту космического аппарата. В статье сформированы цели, принципы, общая архитектура, функциональные особенности и основные требования к созданию автоматизированной системы поддержки принятия решений в аварийных ситуациях на МКС. Приведены обобщенная функциональная структура автоматизированной системы поддержки принятия решений в аварийных ситуациях, наиболее важные параметры, характеризующие аварийную ситуацию разгерметизации, рассмотрены основные форматы отображения состояния МКС и контроля деятельности экипажа при парировании разгерметизации на основе данных реального полета и при моделировании аварийной ситуации. При выборе рекомендуемых вариантов решений предложено использовать классические методы теории принятия решений, основанные на представлении

процесса парирования аварийной ситуации в виде марковской сети с дискретными состояниями, и мультиагентные технологии. Рассмотрена структурная схема процесса моделирования разгерметизации, приведена структура программного обеспечения системы. В настоящее время система используется специалистами главной оперативной группы управления в целях повышения оперативности и обоснованности решений.

Ключевые слова: автоматизированная система, аварийная ситуация, поддержка принятия решений, МКС.

AUTOMATED SYSTEM OF DECISION MAKING SUPPORT IN EMERGENCIES Matyushin M.M., head of department (RSC «Energía», Lenina St., 4а, Korolev, 141070, Russia, matushin@gmail.com); Pototsky S.I., Ph.D., professor, head of the department; Potapov V.I., deputy head of department (Don Branch of the Space Simulator Center, Platovsky Av., 101, Novocherkassk, 346400, Russia, s.pototsky@yandex.ru, novch-vpot@ yandex.ru);

Skobelev P. O., Ph.D., president and general designer (Group of companies «Knowledge Genesis»), leading researcher (Institute of problems of management of complex systems of RAS);

Lakhin O.I., head of the central project management (OOO "NPK "Reasonable decision", Moscow highway, 17, Samara, 443013, Russia, petr.scobelev@gmail. com, lakhin@smartsolutions-123. ru)

Abstract. Safety precautions of the crew and spacecraft casualty control are one of the most important tasks of the modem satellites mission control. The main conditions to solve this task successfully are timely detection and elimination of emergency situations aboard a spacecraft. The article forms the purposes, principles, overall architecture, functional characteristics and basic requirements to creation of an automated system of decision-making support in emergencies on the ISS. The paper describes generalized functional structure of the automated system of decision-making support in emergency situations, the most important parameters characterizing the emergency depressurization, the main formats to display the ISS status and oversight of crew activities while depressurization based on real flight data and while emergency situation simulation. When choosing the recommended solutions, it's proposed to use classic methods of the decision-making theory based on the representation of the emergency countering process in the form of Markov network with discrete states, and multi-agent technologies. A block diagram of the depressurization modeling process is considered, there is a structure of the system software. Now the system is used by the lead operational control team in order to improve the efficiency and validity of decisions.

Keywords: automated system, emergency, decision-making support, ISS.

В процессе организации космических полетов всегда учитывается повышенный риск возникновения опасности. Поэтому одной из самых важных задач управления полетами современных пилотируемых космических аппаратов (КА) является обеспечение безопасности экипажа и живучести космического корабля, на котором выполняется полет. В соответствии с принятыми подходами [1] основными условиями успешного решения этой задачи должны быть своевременное обнаружение и ликвидация нештатных, в том числе и аварийных ситуаций на борту КА.

Под нештатной ситуацией понимается совокупность обстоятельств, обусловленных действием возмущающих факторов и представляющих угрозу безопасности или выполнению задач полета, под аварийной ситуацией - совокупность множеств катастрофических и критических нештатных ситуаций [2]. В таких случаях большое значение имеет быстрое и точное информирование всех специалистов, участвующих в ликвидации возникшей ситуации, о параметрах, характеризующих ее развитие, и вариантах действий, которые должны нормализовать обстановку.

С учетом увеличения продолжительности космических полетов и значительного повышения объемов информации, которыми обмениваются КА и центр управления полетом, в настоящее время для повышения уровня безопасности управления полетом Российского сегмента (РС) Международной космической станции (МКС) создает-

ся автоматизированная система поддержки принятия решений (АСППР) в аварийных ситуациях.

Процесс выработки и принятия решений в ходе парирования аварийной ситуации включает в себя комплекс задач, связанных с получением и переработкой информации о состоянии объекта управления, прогноза его состояния, разработкой и выбором оптимального варианта решения и превращением его в управляющие воздействия. Такой многоплановый и многошаговый процесс достаточно плохо поддается формализации и во многом зависит от способностей, знаний и опыта ЛПР -специалистов главной оперативной группы управления (ГОГУ).

Основной целью разработки АСППР в аварийных ситуациях является использование новых методов и средств для улучшения показателей оперативности и эффективности действий ГОГУ на основе оптимального представления необходимой информации и повышения обоснованности принимаемых решений, в частности, при парировании аварийных ситуаций, связанных с возникновением на МКС разгерметизации, пожара или выброса токсических веществ.

Эти цели достигаются в рамках создаваемой системы реализацией следующих функций.

1. Концентрация, обобщение и отображение всей информации, необходимой персоналу управления и экипажу для однозначного и цельного представления о состоянии МКС, как об осуществляемых, так и о последующих действиях.

Бортовой комплекс МКС

Телеметрическая информация

2. Оперативный прогноз возможных изменений особо важных параметров состояния РС МКС в ходе парирования аварийной ситуации.

3. Анализ имеющихся ресурсов и вариантов их эффективного использования для ликвидации возникшей ситуации.

4. Автоматизированная поддержка принятия решений в ходе парирования аварийной ситуации с учетом использования имеющегося опыта, инструкций, методик и справочных материалов, а также интеллектуальных технологий и методов принятия решений.

5. Имитационное моделирование процесса развития аварийных ситуаций в целях накопления информации, отработки методик и подготовки персонала к действиям в аварийных ситуациях.

АСППР в аварийных ситуациях создается как открытая модульная система с учетом возможности ее поэтапного наращивания.

На рисунке 1 приведена обобщенная структурная схема создаваемой системы.

На первом этапе была решена задача разработки средств, обеспечивающих эффективные действия по ликвидации разгерметизации на МКС.

Оперативная оценка ситуации производится на основе анализа поступающей с борта МКС телеметрической информации, докладов экипажа и сведений, вводимых специалистами ГОГУ.

При разгерметизации основными параметрами, характеризующими возникновение и развитие аварийной ситуации, являются изменение давления в отсеках станции и допустимое время нахождения экипажа в разгерметизированном отсеке.

Фиксация, организация обработки, хранения и отображения информации осуществляются таким образом, чтобы для всех специалистов ГОГУ и членов экипажа обеспечивались единое однозначное и комплексное представление ситуации, осуществляемых и последующих действий. Вся поступающая в систему информация хранится в БД. В процессе анализа и ликвидации аварийной ситуации используются хранящиеся в БД сведения справочного характера, в том числе характеристики космических аппаратов, модулей, отсеков, резервные объемы воздуха (средства наддува и используемые в них газы), а также параметры оперативного состояния (конкретная конфигурация станции, состояние люков между модулями станции, параметры атмосферы, текущее давление в отсеках, расчетные значения других параметров, характеризующих процесс парирования аварийной ситуации).

Средства отображения информации экипажу

Доклады экипажа

Ввод информации специалистами ГОГУ

Технические средства специалистов ГОГУ

Выбор рекомендуемого варианта решения

Рис. 1. Обобщенная функциональная структура системы

В процессе оперативной оценки ситуации используются модели прогноза важных параметров и модели использования ресурсов. При этом осуществляется расчет наиболее важных характеристик ситуации:

- объем аварийного сегмента;

- темп падения давления в этом сегменте;

- текущие и прогнозные значения давления в каждом из отсеков станции;

- резервное (допустимое) время нахождения экипажа в отсеке.

Расчет резервного времени выполняется по номограммам либо по формуле

(

Т ==

рез

Рнач • (1 / 60) • 1п

Р,

Р

V мин у

где Трез - резервное время; - темп падения давления; Рнач - начальное давление; Рмин - минимальное допустимое давление (490 мм рт. ст.).

Пересчет темпа падения давления при закрытии или открытии люка выполняется на основе

следующего выражения:

Г,

^Ъе/ог

К

где

а/1ег

1ММ - новое значение темпа падения давления; Уъе/ог - объем сегмента перед открытием/закрытием люка; УаЦег - объем сегмента после открытия/закрытия люка.

После открытия люка, изолирующего два сегмента МКС, имеющих разное давление, давление между люками выравнивается за счет перетекания газа из сегмента с большим давлением в сегмент с меньшим давлением.

Результирующее давление вычисляется по Р XV +Р XV

л.-.«, „.,.„.,-,. Г) нач нач отсека отсека формуле Ртек =--'

В процессе комплексной оценки ситуации прогнозируются варианты использования дополнительных ресурсов, в том числе запасов воздуха, кислорода, азота в баках и переносных блоках наддува в системе; осуществляются расчеты массы газа в соответствующих емкостях, времени наддува, изменения давления в отсеке при использовании средств наддува.

Результаты комплексной оценки ситуации отображаются на форматах специалистов оперативной группы управления. Основным форматом отображения состояния МКС при возникновении разгерметизации является главное окно общего плана МКС, на котором отображаются конфигурация станции, местонахождение членов экипажа, имеющиеся ресурсы, состояние люков, значения давления в отсеках и резервного времени (рис. 2). Негерметичные сегменты выделяются цветом.

Другим важным форматом является отображение действий членов экипажа и специалистов группы управления в соответствии с предусмотренным для соответствующей ситуации алгоритмом. На рисунке 3 в качестве примера показаны алгоритмы действий членов экипажа в двух смежных сегментах станции. После закрытия люков между сегментами определяется негерметичный сегмент (в негерметичном сегменте давление продолжает падать), и алгоритм регламентирует последовательность дальнейших действий в зависи-

мости от результатов измерения давления в соответствующих сегментах МКС. На схеме алгоритма выделяются действия, выполненные ранее, выполняемые в данный момент, и действия, которые должны выполняться впоследствии.

Информация о выполнении экипажем определенных операций в соответствии с нормативным алгоритмом вводится специалистами группы управления полетом, ответственными за парирование аварийной ситуации, на основании докладов экипажа.

В случае выхода ситуации за рамки условий, предусмотренных инструкцией, используются дополнительные средства поиска вариантов решений, которые должны обеспечивать ликвидацию аварийной ситуации. Прежде всего осуществляется автоматизированный поиск соответствующих возникающей ситуации справочных данных, ме-

тодических материалов, пособий, инструкций и методических указаний.

Для выбора рекомендуемых вариантов решений предполагается использование классических методов теории принятия решений, основанных на представлении процесса парирования аварийной ситуации в виде марковской цепи с дискретными состояниями 5/. Каждое состояние характеризуется вектором параметров, определяющих данное состояние. Полагается, что переход из предыдущего состояния 5/ в последующее осуществ-

Рис. 2. Главное окно общего плана МКС

Рис. 3. Алгоритмы действий членов экипажа

ляется на основе реализации решения di и существует система <£, Д где ^ - некоторый оценочный функционал, позволяющий качественно оценить эффективность принимаемого решения для каждой пары Задача поиска рациональных решений сводится к построению матрицы оценочного функционала, то есть к определению значений /к, которые отражают эффективность перевода системы в состояние

Подсистемой АСППР в аварийных ситуациях является интеллектуальная система поддержки принятия решений, которая позволяет осуществлять в режиме реального времени поиск рационального варианта использования бортовых ресурсов МКС в процессе парирования аварийных ситуаций. Система реагирует на события для распознавания проблемной ситуации, осуществляет распределение ресурсов и вырабатывает план, который предусматривает варианты перемещения членов экипажа и использования бортовых средств при парировании аварийной ситуации. Далее системой осуществляется мониторинг исполнения построенного сценария действий по парированию аварийной ситуации; при расхождении факта с планом или при поступлении новых событий (изменении развития аварийной ситуации) запускается перепланирование для построения нового плана с учетом новых факторов, выявленных при развитии и парировании аварийной ситуации.

Данная задача решается с использованием муль-тиагентных технологий, которые в последнее время получают все большее распространение при управлении ресурсами в реальном времени.

Каждой подсистеме станции, бортовому средству или члену экипажа поставлен в соответствие программный агент, действующий от его имени и по его поручению. Такой агент представляет собой автономную программу, которая может реагировать на события, принимать решения и взаимодействовать с другими агентами или пользователями, реализуя внутренний встроенный цикл управления без требования внешних инструкций.

Выделяются два основных класса агентов, которые находятся в постоянном поиске друг друга: агенты потребностей и агенты возможностей. Цель агента потребностей - найти для себя наилучшую по заданным параметрам возможность для реализации, а цель агента возможностей -максимально эффективно использовать свой ресурс. В качестве типов агентов потребностей выбраны агент формирования команды для парирования аварийной ситуации (организует поиск подходящих ресурсов для решения задачи парирования аварийной ситуации), агент аварийной ситуации (находит возможные варианты планов действий для космонавта по использованию бортовых средств и выбирает из них наиболее оптимальный по критерию «максимальный прирост

резервного времени» или «быстрый путь»), агент запроса на возможность действия (получает возможность использования бортового средства, возможность перехода из отсека в отсек и др.). В качестве типов агентов возможностей выбраны агент бортового средства (информирует о состоянии бортового средства и дает рекомендации по их использованию), агент космонавта (обеспечивает выполнение рекомендаций по использованию бортовых средств), агент маршрута (строит маршрут с учетом оценки проходимости, времени движения, положения космонавта и бортового средства, реагирует на события), агенты отсеков, люков (используются для получения информации, оповещения о событиях и проведения расчетов по запросам от других агентов или по событиям, например, если люк закрывается, оповещается агент маршрута, который его использует).

Таким образом, в процессе принятия решений при парировании аварийной ситуации агенты обеспечивают решение следующих задач: фиксация отклонений при использования ресурса от планируемых значений; прогноз дальнейшего уровня изменения ресурса относительно планируемого; выяснение критичности отклонения (ес-

ли событие критичное, предлагается вариант оптимального перераспределения ресурса для обеспечения работоспособности системы в целом); обнаружение и по возможности устранение причины отклонения.

В результате формируются варианты планов с рекомендациями по использованию бортовых средств.

Поиск подходящих ресурсов и выработка рекомендаций для членов экипажа по использованию бортовых средств производятся на основе онтологии знаний об объектах, отношениях, процессах и свойствах подсистем и узлов МКС.

Онтология - средство формализации знаний о предметной области, реализуемое на основе семантической сети, которая образуется классами понятий и отношений, играющих роль связей [3]. В онтологии выделены особые подклассы понятий: объекты (сущности, характеризуемые свойствами и состояниями: «модуль», «отсек», «люк», «средство наддува», «экипаж»), процессы (цепочки действий по изменению состояний объектов: «падение давления» в отсеке, «перемещение» космонавта), отношения (связывают объекты и конструируют сложные объекты из простых, на-

Определение аварийного отсека

Расчет массы газа в средстве наддува

Расчет значений давления в отсеках

аварийного сегмента

Рис. 4. Структурная схема имитационного моделирования процесса разгерметизации

пример, средство наддува «находится в» отсеке, экипаж «использует» средство наддува, модуль «стыкуется» с другим модулем), свойства (отражают способность объектов вступать во взаимодействие, например, отсек «имеет» объем, объект «имеет» горючесть), атрибуты (характеризуют состояние свойств или отношений: «текущее давление», «темп падения давления», «резервное время», «текущая масса»). С использованием онтологии можно специфицировать конкретные факты и строить формализованные модели описания конкретной ситуации (текущей конфигурации станции, расположения и состояния объектов, бортовых средств, космонавтов и др.).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

В процессе планирования агенты обращаются к онтологии для получения необходимой информации.

Для отработки и проверки корректности и эффективности формируемых рекомендаций применяется имитационное моделирование процесса возникновения и развития аварийной ситуации, в котором принимают участие специалисты ГОГУ. Имитационная модель используется также для подготовки персонала ГОГУ к действиям в условиях возникновения аварийной ситуации и в случае возникновения аварийной ситуации при отсутствии данных телеметрии.

При имитационном моделировании аварийной ситуации на МКС данные о текущих значениях

параметров не поступают в систему по каналам телеметрии с борта МКС, а вычисляются в имитационной модели МКС.

Для запуска процесса моделирования, контроля и управления им используется главное окно имитационной модели, содержащее панель отображения ситуации на МКС. Перед началом моделирования вводятся начальные условия, которые определяют исходную ситуацию. При этом задаются начальные значения давления в отсеках, имеющиеся ресурсы, состояние люков, местонахождение членов экипажа. Начальные условия могут задаваться либо из состава заранее подготовленных данных, накапливаемых в БД в хт1-формате, либо пользователем непосредственно перед проведением тренировки.

На рисунке 4 показана структурная схема процесса моделирования.

После ввода начальных условий в БД осуществляется процесс моделирования в заданном масштабе времени. Рассчитываются изменение давления в каждом отсеке, количество оставшихся ресурсов в средствах наддува, резервное время и другие параметры, характеризующие моделируемую ситуацию.

Моделируемые параметры аварийной ситуации МКС отображаются в главном окне (рис. 2). Изменение параметров состояния МКС, используемых при имитационном моделировании аварий-

Модуль обмена с интеллектуальной АСПГТР

Средства представления информации об аварийной ситуации

Модуль контроля и отображения нормативного алгоритма действий экипажа

Модуль расчета

параметров при перекрытии

Модуль расчета давления при использовании средств наддува

Рис. 5. Структура ПО

ной ситуации, может производиться как с форматов ввода неинструментальной информации параметров МКС, так и на схеме МКС с помощью манипулятора «мышь».

Для обеспечения отображения степени опасности и улучшения восприятия моделируемой картины в целом производится выделение изолированных сегментов МКС и выделение цветом зон с разным уровнем разгерметизации.

В модели имеются средства ввода управляющих воздействий для отображения действий экипажа, связанных с их перемещением, перекрытием люков, использованием средств наддува.

На рисунке 5 представлена структура программного обеспечения базовой части разрабатываемой системы.

В настоящее время система используется специалистами ГОГУ для повышения оперативности и обоснованности решений, принимаемых на основе автоматизации обработки, анализа и оптимального представления информации. Одновременно осуществляется поэтапное развитие систе-

мы для расширения ее функциональных возможностей, в том числе в направлении опережающего распознавания и предупреждения возникновения нештатных и аварийных ситуаций.

Литература

1. Береговой Г.Т., Ярополов В.И., Баранецкий И.И. Справочник по безопасности космических полетов. М.: Машиностроение, 1989. 336 с.

2. Соловьев В.А., Лысенко Л.Н., Любинский В.Е. Управление космическими полетами. М.: МГТУ им. Н.Э. Баумана, 2009. Ч. 1. 476 с.

3. Скобелев П.О. Онтологии деятельности для ситуационного управления предприятиями в реальном времени // Онтология проектирования. 2012. № 1 (3). С. 6-38.

References

1. Bérégovoy G.T., Yaropolov V.I., Baranetsky I.I., Spravochnik po bezopasnosti kosmicheskikh poletov [Spaceflights safety guide], Moscow, Mashinostroenie, 1989.

2. Solovyov V.A., Lysenko L.N., Lyublinskiy V.E., Upravlenie kosmicheskimi poletami [Spaceflights control], Part 1, Moscow, BMSTU, 2009.

3. Skobelev P.O., Ontology of designing, 2012, no. 1 (3), pp. 6-38.

УДК 004.588, 004.823

БОРТОВОЙ МОДУЛЬ ИНФОРМАЦИОННОЙ ПОДДЕРЖКИ ЭКИПАЖА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ

С.И. Кравченко, к.т.н., главный специалист (Донской филиал Центра тренажеростроения, Платовский просп., 101, г. Новочеркасск, 346400, Россия, artstory@pk.ru)

Приведено описание нового бортового модуля интерфейса для представления членам экипажа Российского сегмента МКС виртуальных руководств космическими экспериментами (ВИРУ). Дается характеристика модуля как центра компоновки и воспроизведения мультимедиа сцен. Описаны функциональный состав системы, требования к операционной среде, указаны тип и назначение каждого элемента структуры, приведен набор управляющих файлов, обсуждается назначение XML-атрибутов. Обосновывается выбор линейной, одноуровневой внутренней структуры XML для повышения надежности системы. Приводятся детальные функциональная и ситуационная циклограммы модуля с подробным, поэтапным описанием межмодульного взаимодействия. Указывается, что структура информационного обеспечения целенаправленно разделена на две основные категории: компактные управляющие и структурирующие XML-описания и «большой» массив мультимедиа. Такой подход обусловлен спецификой процедур обновления заданий и техническими возможностями канала связи борт-Земля. Описаны основные этапы наземной подготовки мультимедиа ресурсов. Уделяется внимание ситуационному поведению оператора при работе с виртуальными органами управления, протоколированию результатов и оценке деятельности экипажа. Даются ссылки на источники информации по техническим экспериментам и исследованиям с использованием ВИРУ на Российском сегменте МКС.

Ключевые слова: космический эксперимент, виртуальное руководство, мультимедиа, Российский сегмент МКС, моделирование, циклограмма, интерфейс.

THE ONBOARD MODULE FOR INFORMATION SUPPORT OF THE INTERNATIONAL SPACE STATION CREW Kravchenko S.I., Ph.D., chief specialist (Don Branch of the Space Simulator Center, Platovsky Av., 101, Novocherkassk, 346400, Russia, artstory@bk.ru) Abstract. The article describes a new onboard interface module to present virtual user manuals on space experiments in Russian ISS section. The module positioned as the center for multimedia scenes composition and playback. The paper describes the functional structure of the system, requirements to the operating environment, type and purpose of each element of the structure, a set of control files, the role of XML-attributes. A choice of a linear, single-level internal XML structure to improve system reliability is declared. Detailed functional and situational sequence diagrams of the module with detailed

i Надоели баннеры? Вы всегда можете отключить рекламу.